Edexcel F1 2023 January — Question 4

Exam BoardEdexcel
ModuleF1 (Further Pure Mathematics 1)
Year2023
SessionJanuary
TopicNewton-Raphson method
TypeNewton-Raphson convergence failure

4. $$f ( x ) = 1 - \frac { 1 } { 8 x ^ { 4 } } + \frac { 2 } { 7 \sqrt { x ^ { 7 } } } \quad x > 0$$ The equation \(\mathrm { f } ( x ) = 0\) has a single root, \(\alpha\), that lies in the interval \([ 0.15,0.25 ]\)
    1. Determine \(\mathrm { f } ^ { \prime } ( x )\)
    2. Explain why 0.25 cannot be used as an initial approximation for \(\alpha\) in the Newton-Raphson process.
    3. Taking 0.15 as a first approximation to \(\alpha\) apply the Newton-Raphson process once to \(\mathrm { f } ( x )\) to obtain a second approximation to \(\alpha\) Give your answer to 3 decimal places.
  1. Use linear interpolation once on the interval \([ 0.15,0.25 ]\) to find another approximation to \(\alpha\) Give your answer to 3 decimal places.