- A random variable \(X\) has probability density function given by
$$f ( x ) = \left\{ \begin{array} { c c }
\frac { 1 } { 4 } & - \frac { 1 } { 2 } \leqslant x < \frac { 1 } { 2 }
2 x - \frac { 3 } { 4 } & \frac { 1 } { 2 } \leqslant x \leqslant k
0 & \text { otherwise }
\end{array} \right.$$
where \(k\) is a positive constant.
- Sketch the graph of \(\mathrm { f } ( x )\)
- By forming and solving an equation in \(k\), show that \(k = 1.25\)
- Use calculus to find \(\mathrm { E } ( X )\)
- Calculate the interquartile range of \(X\)