Find normal line equation

Determine the equation of a normal (perpendicular) line to a curve at a given point.

37 questions

AQA C2 2005 January Q1
1 A curve is defined for \(x > 0\) by the equation \(y = x + \frac { 2 } { x }\).
    1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\).
    2. Hence show that the gradient of the curve at the point \(P\) where \(x = 2\) is \(\frac { 1 } { 2 }\).
  1. Find an equation of the normal to the curve at this point \(P\).
AQA C2 2008 January Q5
5 A curve, drawn from the origin \(O\), crosses the \(x\)-axis at the point \(P ( 4,0 )\).
The normal to the curve at \(P\) meets the \(y\)-axis at the point \(Q\), as shown in the diagram.
\includegraphics[max width=\textwidth, alt={}, center]{14c2acbb-5f3e-40e2-8b88-162341ab9f71-3_526_629_916_813} The curve, defined for \(x \geqslant 0\), has equation $$y = 4 x ^ { \frac { 1 } { 2 } } - x ^ { \frac { 3 } { 2 } }$$
    1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\).
      (3 marks)
    2. Show that the gradient of the curve at \(P ( 4,0 )\) is - 2 .
    3. Find an equation of the normal to the curve at \(P ( 4,0 )\).
    4. Find the \(y\)-coordinate of \(Q\) and hence find the area of triangle \(O P Q\).
    5. The curve has a maximum point \(M\). Find the \(x\)-coordinate of \(M\).
    1. Find \(\int \left( 4 x ^ { \frac { 1 } { 2 } } - x ^ { \frac { 3 } { 2 } } \right) \mathrm { d } x\).
    2. Find the total area of the region bounded by the curve and the lines \(P Q\) and \(Q O\).
AQA C2 2013 January Q5
5 The point \(P ( 2,8 )\) lies on a curve, and the point \(M\) is the only stationary point of the curve. The curve has equation \(y = 6 + 2 x - \frac { 8 } { x ^ { 2 } }\).
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\).
  2. Show that the normal to the curve at the point \(P ( 2,8 )\) has equation \(x + 4 y = 34\).
    1. Show that the stationary point \(M\) lies on the \(x\)-axis.
    2. Hence write down the equation of the tangent to the curve at \(M\).
  3. The tangent to the curve at \(M\) and the normal to the curve at \(P\) intersect at the point \(T\). Find the coordinates of \(T\).
AQA C2 2016 June Q3
3 marks
3 The diagram shows a curve with a maximum point \(M\).
\includegraphics[max width=\textwidth, alt={}, center]{e183578a-29a8-4112-b941-06c8894ed078-06_512_867_354_589} The curve is defined for \(x > 0\) by the equation $$y = 6 x ^ { \frac { 1 } { 2 } } - x - 3$$
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\).
  2. Hence find the \(y\)-coordinate of the maximum point \(M\).
  3. Find an equation of the normal to the curve at the point \(P ( 4,5 )\).
  4. It is given that the normal to the curve at \(P\), when translated by the vector \(\left[ \begin{array} { l } k
    0 \end{array} \right]\), passes through the point \(M\). Find the value of the constant \(k\).
    [0pt] [3 marks]
Edexcel C3 Q2
2. A curve has the equation \(y = \sqrt { 3 x + 11 }\). The point \(P\) on the curve has \(x\)-coordinate 3 .
  1. Show that the tangent to the curve at \(P\) has the equation $$3 x - 4 \sqrt { 5 } y + 31 = 0$$ The normal to the curve at \(P\) crosses the \(y\)-axis at \(Q\).
  2. Find the \(y\)-coordinate of \(Q\) in the form \(k \sqrt { 5 }\).
OCR PURE Q3
3 In this question you must show detailed reasoning. Find the equation of the normal to the curve \(y = 4 \sqrt { x } - 3 x + 1\) at the point on the curve where \(x = 4\). Give your answer in the form \(a x + b y + c = 0\), where \(a , b\) and \(c\) are integers.
OCR MEI AS Paper 2 2019 June Q10
10 In this question you must show detailed reasoning. The equation of a curve is \(y = \frac { x ^ { 2 } } { 4 } + \frac { 2 } { x } + 1\). A tangent and a normal to the curve are drawn at the point where \(x = 2\). Calculate the area bounded by the tangent, the normal and the \(x\)-axis. \section*{END OF QUESTION PAPER}
SPS SPS FM 2023 October Q4
4. In this question you must show detailed reasoning. Find the equation of the normal to the curve \(y = 4 \sqrt { x } - 3 x + 1\) at the point on the curve where \(x = 4\). Give your answer in the form \(a x + b y + c = 0\), where \(a\), band \(c\) are integers.
[0pt] [BLANK PAGE]
  1. Find the binomial expansion of \(( 3 + k x ) ^ { 3 }\), simplifying the terms.
  2. It is given that, in the expansion of \(( 3 + k x ) ^ { 3 }\), the coefficient of \(x ^ { 2 }\) is equal to the constant term. Find the possible values of \(k\), giving your answers in an exact form.
    [0pt] [BLANK PAGE]
SPS SPS FM 2024 October Q7
7. The diagram shows part of the graph of \(y = x ^ { 2 }\). The normal to the curve at the point \(A ( 1,1 )\) meets the curve again at \(B\). Angle \(A O B\) is denoted by \(\alpha\).
\includegraphics[max width=\textwidth, alt={}, center]{1e5d102a-955d-4968-8328-339f12665e01-16_506_741_283_217}
  1. Determine the coordinates of \(B\).
  2. Hence determine the exact value of \(\tan \alpha\).
    [0pt] [BLANK PAGE]
AQA AS Paper 1 2023 June Q1
1 At a point \(P\) on a curve, the gradient of the tangent to the curve is 10 State the gradient of the normal to the curve at \(P\) Circle your answer.
-10
-0.1
0.1
10
AQA AS Paper 2 2019 June Q8
8 A curve has equation $$y = x ^ { 3 } + p x ^ { 2 } + q x - 45$$ The curve passes through point \(R ( 2,3 )\)
The gradient of the curve at \(R\) is 8
8
  1. Find the value of \(p\) and the value of \(q\).
    8
  2. Calculate the area enclosed between the normal to the curve at \(R\) and the coordinate 8
  3. axes.
    \(9 \quad\) A curve \(C\) has equation \(y = \mathrm { f } ( x )\) where $$f ( x ) = ( x - 2 ) ( x - 3 ) ^ { 2 }$$
AQA Paper 3 2023 June Q3
3 A curve with equation \(y = \mathrm { f } ( x )\) passes through the point (3, 7) Given that \(\mathrm { f } ^ { \prime } ( 3 ) = 0\) find the equation of the normal to the curve at ( 3,7 ) Circle your answer. $$y = \frac { 7 } { 3 } x \quad y = 0 \quad x = 3 \quad x = 7$$