AQA C2 2013 January — Question 5

Exam BoardAQA
ModuleC2 (Core Mathematics 2)
Year2013
SessionJanuary
TopicDifferentiation Applications
TypeFind normal line equation

5 The point \(P ( 2,8 )\) lies on a curve, and the point \(M\) is the only stationary point of the curve. The curve has equation \(y = 6 + 2 x - \frac { 8 } { x ^ { 2 } }\).
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\).
  2. Show that the normal to the curve at the point \(P ( 2,8 )\) has equation \(x + 4 y = 34\).
    1. Show that the stationary point \(M\) lies on the \(x\)-axis.
    2. Hence write down the equation of the tangent to the curve at \(M\).
  3. The tangent to the curve at \(M\) and the normal to the curve at \(P\) intersect at the point \(T\). Find the coordinates of \(T\).