Complex conjugate properties and proofs

A question is this type if and only if it asks to prove general properties involving conjugates, such as (u + w)* = u* + w* or zz* = |z|².

5 questions

CAIE P3 2021 November Q3
3
  1. Given the complex numbers \(u = a + \mathrm { i } b\) and \(w = c + \mathrm { i } d\), where \(a , b , c\) and \(d\) are real, prove that \(( u + w ) ^ { * } = u ^ { * } + w ^ { * }\).
  2. Solve the equation \(( z + 2 + \mathrm { i } ) ^ { * } + ( 2 + \mathrm { i } ) z = 0\), giving your answer in the form \(x + \mathrm { i } y\) where \(x\) and \(y\) are real.
OCR MEI FP1 2006 January Q2
2
  1. Given that \(z = a + b \mathrm { j }\), express \(| z |\) and \(z ^ { * }\) in terms of \(a\) and \(b\).
  2. Prove that \(z z ^ { * } - | z | ^ { 2 } = 0\).
AQA Further Paper 2 Specimen Q2
3 marks
2 Given that \(z\) is a complex number and that \(z ^ { * }\) is the complex conjugate of \(z\)
prove that \(z z ^ { * } - | z | ^ { 2 } = 0\)
[0pt] [3 marks] LL
Edexcel CP2 Specimen Q4
  1. A complex number \(z\) has modulus 1 and argument \(\theta\).
    1. Show that
    $$z ^ { n } + \frac { 1 } { z ^ { n } } = 2 \cos n \theta , \quad n \in \mathbb { Z } ^ { + }$$
  2. Hence, show that $$\cos ^ { 4 } \theta = \frac { 1 } { 8 } ( \cos 4 \theta + 4 \cos 2 \theta + 3 )$$
AQA Further Paper 2 2019 June Q1
1 marks
1 Given that \(z\) is a complex number, and that \(z ^ { * }\) is the complex conjugate of \(z\), which of the following statements is not always true? Circle your answer.
[0pt] [1 mark] $$\left( z ^ { * } \right) ^ { * } = z \quad z z ^ { * } = | z | ^ { 2 } \quad ( - z ) ^ { * } = - \left( z ^ { * } \right) \quad z - z ^ { * } = z ^ { * } - z$$