A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Stats And Pure
Complex Numbers Arithmetic
Q4
Edexcel CP2 Specimen — Question 4
Exam Board
Edexcel
Module
CP2 (Core Pure 2)
Session
Specimen
Topic
Complex Numbers Arithmetic
Type
Complex conjugate properties and proofs
A complex number \(z\) has modulus 1 and argument \(\theta\).
Show that
$$z ^ { n } + \frac { 1 } { z ^ { n } } = 2 \cos n \theta , \quad n \in \mathbb { Z } ^ { + }$$
Hence, show that $$\cos ^ { 4 } \theta = \frac { 1 } { 8 } ( \cos 4 \theta + 4 \cos 2 \theta + 3 )$$
This paper
(7 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7