Find parameter value for geometric condition

A question is this type if and only if it asks to find a constant or parameter value given a distance, angle, or other geometric constraint involving vectors.

6 questions · Standard +0.8

Sort by: Default | Easiest first | Hardest first
CAIE P3 2008 June Q10
10 marks Standard +0.8
10 The points \(A\) and \(B\) have position vectors, relative to the origin \(O\), given by $$\overrightarrow { O A } = \mathbf { i } + 2 \mathbf { j } + 3 \mathbf { k } \quad \text { and } \quad \overrightarrow { O B } = 2 \mathbf { i } + \mathbf { j } + 3 \mathbf { k } .$$ The line \(l\) has vector equation $$\mathbf { r } = ( 1 - 2 t ) \mathbf { i } + ( 5 + t ) \mathbf { j } + ( 2 - t ) \mathbf { k }$$
  1. Show that \(l\) does not intersect the line passing through \(A\) and \(B\).
  2. The point \(P\) lies on \(l\) and is such that angle \(P A B\) is equal to \(60 ^ { \circ }\). Given that the position vector of \(P\) is \(( 1 - 2 t ) \mathbf { i } + ( 5 + t ) \mathbf { j } + ( 2 - t ) \mathbf { k }\), show that \(3 t ^ { 2 } + 7 t + 2 = 0\). Hence find the only possible position vector of \(P\). \footnotetext{Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge. }
Edexcel P4 2018 Specimen Q9
15 marks Standard +0.3
  1. With respect to a fixed origin \(O\), the line \(l _ { 1 }\) is given by the equation
$$\mathbf { r } = \left( \begin{array} { r } 8 \\ 1 \\ - 3 \end{array} \right) + \mu \left( \begin{array} { r } - 5 \\ 4 \\ 3 \end{array} \right)$$ where \(\mu\) is a scalar parameter.
The point \(A\) lies on \(l _ { 1 }\) where \(\mu = 1\)
  1. Find the coordinates of \(A\). The point \(P\) has position vector \(\left( \begin{array} { l } 1 \\ 5 \\ 2 \end{array} \right)\) The line \(l _ { 2 }\) passes through the point \(P\) and is parallel to the line \(l _ { 1 }\)
  2. Write down a vector equation for the line \(l _ { 2 }\)
  3. Find the exact value of the distance \(A P\). Give your answer in the form \(k \sqrt { 2 }\), where \(k\) is a constant to be found. The acute angle between \(A P\) and \(l _ { 2 }\) is \(\theta\)
  4. Find the value of \(\cos \theta\) A point \(E\) lies on the line \(l _ { 2 }\) Given that \(A P = P E\),
  5. find the area of triangle \(A P E\),
  6. find the coordinates of the two possible positions of \(E\).
OCR Further Pure Core 2 2024 June Q5
6 marks Challenging +1.2
5 Vectors, \(\mathbf { a } , \mathbf { b }\) and \(\mathbf { c }\), are given by \(\mathbf { a } = \mathbf { i } + ( 1 - p ) \mathbf { j } + ( p + 2 ) \mathbf { k } , \mathbf { b } = 2 \mathbf { i } + \mathbf { j } + \mathbf { k }\) and \(\mathbf { c } = \mathbf { i } + 14 \mathbf { j } + ( p - 3 ) \mathbf { k }\) where \(p\) is a constant. You are given that \(\mathbf { a } \times \mathbf { b }\) is perpendicular to \(\mathbf { c }\). Determine the possible values of \(p\).
Edexcel FP1 2022 June Q3
9 marks Standard +0.8
  1. With respect to a fixed origin \(O\), the points \(A\) and \(B\) have coordinates \(( 2,2 , - 1 )\) and ( \(4,2 p , 1\) ) respectively, where \(p\) is a constant.
For each of the following, determine the possible values of \(p\) for which,
  1. \(O B\) makes an angle of \(45 ^ { \circ }\) with the positive \(x\)-axis
  2. \(\overrightarrow { O A } \times \overrightarrow { O B }\) is parallel to \(\left( \begin{array} { r } 4 \\ - p \\ 2 \end{array} \right)\)
  3. the area of triangle \(O A B\) is \(3 \sqrt { 2 }\)
OCR FP1 AS 2018 March Q8
11 marks Challenging +1.3
8 In this question you must show detailed reasoning. A sequence of vectors \(\mathbf { a } _ { 1 } , \mathbf { a } _ { 2 } , \mathbf { a } _ { 3 } , \ldots\) is defined by
  • \(\mathbf { a } _ { 1 } = \left( \begin{array} { l } 1 \\ 1 \\ 1 \end{array} \right)\)
  • \(\quad \mathbf { a } _ { n + 1 } = \left( \mathbf { a } _ { n } \times \mathbf { b } \right) \times \mathbf { b }\), for integers \(n \geqslant 1\), where \(\mathbf { b }\) is the vector \(\frac { 1 } { 4 } \left( \begin{array} { c } - 3 \\ 1 \\ 2 \end{array} \right)\).
    1. Prove by induction that \(\mathbf { a } _ { n } = \left( - \frac { 7 } { 8 } \right) ^ { n - 1 } \left( \begin{array} { l } 1 \\ 1 \\ 1 \end{array} \right)\). for all integers \(n \geqslant 1\).
    2. Use an algebraic method to find the smallest value of \(n\) such that \(\left| \mathbf { a } _ { n } \right| < 0.001\).
\section*{END OF QUESTION PAPER}
OCR FP1 AS 2021 June Q3
6 marks Standard +0.3
3 The equations of two intersecting lines are \(\mathbf { r } = \left( \begin{array} { c } - 12 \\ a \\ - 1 \end{array} \right) + \lambda \left( \begin{array} { l } 2 \\ 2 \\ 1 \end{array} \right) \quad \mathbf { r } = \left( \begin{array} { l } 2 \\ 0 \\ 5 \end{array} \right) + \mu \left( \begin{array} { c } - 3 \\ 1 \\ - 1 \end{array} \right)\) where \(a\) is a constant.
  1. Find a vector, \(\mathbf { b }\), which is perpendicular to both lines.
  2. Show that b. \(\left( \begin{array} { c } - 12 \\ a \\ - 1 \end{array} \right) =\) b. \(\left( \begin{array} { l } 2 \\ 0 \\ 5 \end{array} \right)\).
  3. Hence, or otherwise, find the value of \(a\).