3 The equations of two intersecting lines are
\(\mathbf { r } = \left( \begin{array} { c } - 12
a
- 1 \end{array} \right) + \lambda \left( \begin{array} { l } 2
2
1 \end{array} \right) \quad \mathbf { r } = \left( \begin{array} { l } 2
0
5 \end{array} \right) + \mu \left( \begin{array} { c } - 3
1
- 1 \end{array} \right)\)
where \(a\) is a constant.
- Find a vector, \(\mathbf { b }\), which is perpendicular to both lines.
- Show that b. \(\left( \begin{array} { c } - 12
a
- 1 \end{array} \right) =\) b. \(\left( \begin{array} { l } 2
0
5 \end{array} \right)\). - Hence, or otherwise, find the value of \(a\).