9.
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{48f9a252-61a2-491d-94d0-8470aee96942-12_451_519_328_717}
\captionsetup{labelformat=empty}
\caption{Figure 3}
\end{figure}
Figure 3 shows a sketch of a parallelogram \(X A P B\).
Given that \(\overrightarrow { O X } = \left( \begin{array} { l } 1 \\ 2 \\ 3 \end{array} \right)\)
$$\begin{aligned}
& \overrightarrow { O A } = \left( \begin{array} { l }
0 \\
4 \\
1
\end{array} \right) \\
& \overrightarrow { O B } = \left( \begin{array} { l }
3 \\
3 \\
1
\end{array} \right)
\end{aligned}$$
a. Find the coordinates of the point \(P\).
b. Show that \(X A P B\) is a rhombus.
c. Find the exact area of the rhombus \(X A P B\).