8. The position vectors of the points \(A , B\) and \(C\) from a fixed origin \(O\) are
$$\mathbf { a } = \mathbf { i } - \mathbf { j } , \quad \mathbf { b } = \mathbf { i } + \mathbf { j } + \mathbf { k } , \quad \mathbf { c } = 2 \mathbf { j } + \mathbf { k }$$
respectively.
- Using vector products, find the area of the triangle \(A B C\).
- Show that \(\frac { 1 } { 6 } \mathbf { a } . ( \mathbf { b } \times \mathbf { c } ) = 0\)
- Hence or otherwise, state what can be deduced about the vectors \(\mathbf { a } , \mathbf { b }\) and \(\mathbf { c }\).