Region shading with inequalities

A question is this type if and only if it requires shading a region on an Argand diagram defined by one or more inequalities involving modulus and/or argument conditions.

62 questions · Standard +0.2

Sort by: Default | Easiest first | Hardest first
OCR MEI Further Pure Core AS 2018 June Q9
9 marks Moderate -0.3
9 Fig. 9 shows a sketch of the region OPQ of the Argand diagram defined by $$\{ z : | z | \leqslant 4 \sqrt { 2 } \} \cap \left\{ z : \frac { 1 } { 4 } \pi \leqslant \arg z \leqslant \frac { 1 } { 3 } \pi \right\} .$$ \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{9ef04b56-c6e5-46ea-a485-fe872932e9d8-3_549_520_397_751} \captionsetup{labelformat=empty} \caption{Fig. 9}
\end{figure}
  1. Find, in modulus-argument form, the complex number represented by the point P .
  2. Find, in the form \(a + \mathrm { i } b\), where \(a\) and \(b\) are exact real numbers, the complex number represented by the point Q .
  3. In this question you must show detailed reasoning. Determine whether the points representing the complex numbers
    • \(3 + 5 \mathrm { i }\)
    • \(5.5 ( \cos 0.8 + \mathrm { i } \sin 0.8 )\) lie within this region.
OCR MEI Further Pure Core AS 2022 June Q5
5 marks Standard +0.3
5 An Argand diagram is shown below. The circle has centre at the point representing \(1 + 3 i\), and the half line intersects the circle at the origin and at the point representing \(4 + 4 \mathrm { i }\). \includegraphics[max width=\textwidth, alt={}, center]{c4484913-14bf-4bf4-a290-0301586333ce-3_748_917_351_242} State the two conditions that define the set of complex numbers represented by points in the shaded segment, including its boundaries.
OCR MEI Further Pure Core 2024 June Q6
6 marks Moderate -0.8
6 On separate Argand diagrams, sketch the set of points represented by each of the following.
  1. \(| z - 1 - 2 i | \leqslant 4\).
  2. \(\quad \arg ( z + \mathrm { i } ) = \frac { 1 } { 3 } \pi\).
Edexcel CP AS 2018 June Q3
9 marks Standard +0.3
  1. (a) Shade on an Argand diagram the set of points
$$\{ z \in \mathbb { C } : | z - 1 - \mathrm { i } | \leqslant 3 \} \cap \quad z \in \mathbb { C } : \frac { \pi } { 4 } \leqslant \arg ( z - 2 ) \leqslant \frac { 3 \pi } { 4 }$$ The complex number \(w\) satisfies $$| w - 1 - \mathrm { i } | = 3 \text { and } \arg ( w - 2 ) = \frac { \pi } { 4 }$$ (b) Find, in simplest form, the exact value of \(| w | ^ { 2 }\)
V349 SIHI NI IMIMM ION OCVJYV SIHIL NI LIIIM ION OOVJYV SIHIL NI JIIYM ION OC
Edexcel FP2 AS 2019 June Q3
10 marks Standard +0.8
  1. A curve \(C\) in the complex plane is described by the equation
$$| z - 1 - 8 i | = 3 | z - 1 |$$
  1. Show that \(C\) is a circle, and find its centre and radius.
  2. Using the answer to part (a), determine whether \(z = 3 - 3 \mathrm { i }\) satisfies the inequality $$| z - 1 - 8 i | \geqslant 3 | z - 1 |$$
  3. Shade, on an Argand diagram, the set of points that satisfies both $$| z - 1 - 8 i | \geqslant 3 | z - 1 | \quad \text { and } \quad 0 \leqslant \arg ( z + i ) \leqslant \frac { \pi } { 4 }$$
Edexcel FP2 AS 2022 June Q1
4 marks Standard +0.8
  1. Sketch on an Argand diagram the region defined by
$$z \in \mathbb { C } : - \frac { \pi } { 4 } < \arg ( z + 2 ) < \frac { \pi } { 4 } \cap \{ z \in \mathbb { C } : - 1 < \operatorname { Re } ( z ) \leqslant 1 \}$$ On your sketch
  • shade the part of the diagram that is included in the region
  • use solid lines to show the parts of the boundary that are included in the region
  • use dashed lines to show the parts of the boundary that are not included in the region
Edexcel CP1 2023 June Q3
10 marks Standard +0.3
  1. In this question you must show all stages of your working. Solutions relying on calculator technology are not acceptable.
$$z _ { 1 } = - 4 + 4 i$$
  1. Express \(\mathrm { z } _ { 1 }\) in the form \(r ( \cos \theta + \mathrm { i } \sin \theta )\), where \(r \in \mathbb { R } , r > 0\) and \(0 \leqslant \theta < 2 \pi\) $$z _ { 2 } = 3 \left( \cos \frac { 17 \pi } { 12 } + i \sin \frac { 17 \pi } { 12 } \right)$$
  2. Determine in the form \(a + \mathrm { i } b\), where \(a\) and \(b\) are exact real numbers,
    1. \(\frac { Z _ { 1 } } { Z _ { 2 } }\)
    2. \(\left( z _ { 2 } \right) ^ { 4 }\)
  3. Show on a single Argand diagram
    1. the complex numbers \(z _ { 1 } , z _ { 2 }\) and \(\frac { z _ { 1 } } { z _ { 2 } }\)
    2. the region defined by \(\left\{ z \in \mathbb { C } : \left| z - z _ { 1 } \right| < \left| z - z _ { 2 } \right| \right\}\)
Edexcel FP2 2021 June Q5
10 marks Standard +0.8
  1. The point \(P\) in the complex plane represents a complex number \(z\) such that
$$| z + 9 | = 4 | z - 12 i |$$ Given that, as \(z\) varies, the locus of \(P\) is a circle,
  1. determine the centre and radius of this circle.
  2. Shade on an Argand diagram the region defined by the set $$\{ z \in \mathbb { C } : | z + 9 | < 4 | z - 12 i | \} \cap \left\{ z \in \mathbb { C } : - \frac { \pi } { 4 } < \arg \left( z - \frac { 3 + 44 i } { 5 } \right) < \frac { \pi } { 4 } \right\}$$
OCR Further Pure Core 1 2018 September Q2
6 marks Standard +0.3
2 The loci \(C _ { 1 }\) and \(C _ { 2 }\) are given by \(| z - 1 | = 5\) and \(\arg ( z + 4 + 4 \mathrm { i } ) = \frac { 1 } { 4 } \pi\) respectively.
  1. Sketch on a single Argand diagram the loci \(C _ { 1 }\) and \(C _ { 2 }\).
  2. Indicate by shading on your Argand diagram the following set of points. $$\{ z : | z - 1 | \leqslant 5 \} \cap \left\{ z : 0 \leqslant \arg ( z + 4 + 4 i ) \leqslant \frac { 1 } { 4 } \pi \right\}$$
AQA Further Paper 1 2022 June Q8
11 marks Challenging +1.2
8
  1. The complex number \(w\) is such that $$\arg ( w + 2 \mathrm { i } ) = \tan ^ { - 1 } \frac { 1 } { 2 }$$ It is given that \(w = x + \mathrm { i } y\), where \(x\) and \(y\) are real and \(x > 0\) Find an equation for \(y\) in terms of \(x\) 8
  2. The complex number \(z\) satisfies both $$- \frac { \pi } { 2 } \leq \arg ( z + 2 \mathrm { i } ) \leq \tan ^ { - 1 } \frac { 1 } { 2 } \quad \text { and } \quad | z - 2 + 3 \mathrm { i } | \leq 2$$ The region \(R\) is the locus of \(z\) Sketch the region \(R\) on the Argand diagram below. \includegraphics[max width=\textwidth, alt={}, center]{a889963c-266c-497e-b7fc-99a249ba9e58-10_1015_1020_1683_511} 8
  3. \(\quad z _ { 1 }\) is the point in \(R\) at which \(| z |\) is minimum. 8
    1. Calculate the exact value of \(\left| z _ { 1 } \right|\) 8
  4. (ii) Express \(z _ { 1 }\) in the form \(a + \mathrm { i } b\), where \(a\) and \(b\) are real.
OCR Further Pure Core AS 2021 November Q4
7 marks Standard +0.3
4
  1. A locus \(C _ { 1 }\) is defined by \(C _ { 1 } = \{ \mathrm { z } : | \mathrm { z } + \mathrm { i } | \leqslant \mid \mathrm { z } - 2 \}\).
    1. Indicate by shading on the Argand diagram in the Printed Answer Booklet the region representing \(C _ { 1 }\).
    2. Find the cartesian equation of the boundary line of the region representing \(C _ { 1 }\), giving your answer in the form \(a x + b y + c = 0\).
  2. A locus \(C _ { 2 }\) is defined by \(C _ { 2 } = \{ \mathrm { z } : | \mathrm { z } + 1 | \leqslant 3 \} \cap \{ \mathrm { z } : | \mathrm { z } - 2 \mathrm { i } | \geqslant 2 \}\). Indicate by shading on the Argand diagram in the Printed Answer Booklet the region representing \(C _ { 2 }\).
OCR Further Pure Core 1 2021 June Q1
3 marks Standard +0.3
1 Indicate by shading on an Argand diagram the region $$\{ z : | z | \leqslant | z - 4 | \} \cap \{ z : | z - 3 - 2 i | \leqslant 2 \} .$$