AQA Further Paper 1 2022 June — Question 8

Exam BoardAQA
ModuleFurther Paper 1 (Further Paper 1)
Year2022
SessionJune
TopicComplex Numbers Argand & Loci

8
  1. The complex number \(w\) is such that $$\arg ( w + 2 \mathrm { i } ) = \tan ^ { - 1 } \frac { 1 } { 2 }$$ It is given that \(w = x + \mathrm { i } y\), where \(x\) and \(y\) are real and \(x > 0\)
    Find an equation for \(y\) in terms of \(x\)
    8
  2. The complex number \(z\) satisfies both $$- \frac { \pi } { 2 } \leq \arg ( z + 2 \mathrm { i } ) \leq \tan ^ { - 1 } \frac { 1 } { 2 } \quad \text { and } \quad | z - 2 + 3 \mathrm { i } | \leq 2$$ The region \(R\) is the locus of \(z\)
    Sketch the region \(R\) on the Argand diagram below.
    \includegraphics[max width=\textwidth, alt={}, center]{a889963c-266c-497e-b7fc-99a249ba9e58-10_1015_1020_1683_511} 8
  3. \(\quad z _ { 1 }\) is the point in \(R\) at which \(| z |\) is minimum. 8
    1. Calculate the exact value of \(\left| z _ { 1 } \right|\)
      8
  4. (ii) Express \(z _ { 1 }\) in the form \(a + \mathrm { i } b\), where \(a\) and \(b\) are real.