OCR MEI M1 2008 January — Question 4

Exam BoardOCR MEI
ModuleM1 (Mechanics 1)
Year2008
SessionJanuary
TopicVectors 3D & Lines

4 Force \(\mathbf { F }\) is \(\left( \begin{array} { l } 4
1
2 \end{array} \right) \mathrm { N }\) and force \(\mathbf { G }\) is \(\left( \begin{array} { r } - 6
2
4 \end{array} \right) \mathrm { N }\).
  1. Find the resultant of \(\mathbf { F }\) and \(\mathbf { G }\) and calculate its magnitude.
  2. Forces \(\mathbf { F } , 2 \mathbf { G }\) and \(\mathbf { H }\) act on a particle which is in equilibrium. Find \(\mathbf { H }\). \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{5211a643-307a-4886-a2e2-c11b28e05216-3_99_841_676_651} \captionsetup{labelformat=empty} \caption{Fig. 5}
    \end{figure} A toy car is moving along the straight line \(\mathrm { O } x\), where O is the origin. The time \(t\) is in seconds. At time \(t = 0\) the car is at \(\mathrm { A } , 3 \mathrm {~m}\) from O as shown in Fig. 5. The velocity of the car, \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\), is given by $$v = 2 + 12 t - 3 t ^ { 2 }$$ Calculate the distance of the car from O when its acceleration is zero.