8 The coordinates of the points \(A\) and \(B\) are \(( 3 , - 2,4 )\) and \(( 6,0,3 )\) respectively.
The line \(l _ { 1 }\) has equation \(\mathbf { r } = \left[ \begin{array} { r } 3
- 2
4 \end{array} \right] + \lambda \left[ \begin{array} { r } 2
- 1
3 \end{array} \right]\).
- Find the vector \(\overrightarrow { A B }\).
- Calculate the acute angle between \(\overrightarrow { A B }\) and the line \(l _ { 1 }\), giving your answer to the nearest \(0.1 ^ { \circ }\).
- The point \(D\) lies on \(l _ { 1 }\) where \(\lambda = 2\). The line \(l _ { 2 }\) passes through \(D\) and is parallel to \(A B\).
- Find a vector equation of line \(l _ { 2 }\) with parameter \(\mu\).
- The diagram shows a symmetrical trapezium \(A B C D\), with angle \(D A B\) equal to angle \(A B C\).
\includegraphics[max width=\textwidth, alt={}, center]{5fe2527a-33da-4076-b3fa-4cab545336ec-9_620_675_1197_726}
The point \(C\) lies on line \(l _ { 2 }\). The length of \(A D\) is equal to the length of \(B C\). Find the coordinates of \(C\).