Repeated factor with distinct linear factors

Denominator contains one repeated linear factor (x-a)² and one or more distinct linear factors, requiring the form A/(x-b) + B/(x-a) + C/(x-a)².

19 questions

Edexcel C4 2013 June Q1
  1. Express in partial fractions
$$\frac { 5 x + 3 } { ( 2 x + 1 ) ( x + 1 ) ^ { 2 } }$$
OCR C4 2007 January Q6
6
  1. Express \(\frac { 2 x + 1 } { ( x - 3 ) ^ { 2 } }\) in the form \(\frac { A } { x - 3 } + \frac { B } { ( x - 3 ) ^ { 2 } }\), where \(A\) and \(B\) are constants.
  2. Hence find the exact value of \(\int _ { 4 } ^ { 10 } \frac { 2 x + 1 } { ( x - 3 ) ^ { 2 } } \mathrm {~d} x\), giving your answer in the form \(a + b \ln c\), where \(a , b\) and \(c\) are integers.
OCR C4 Q5
5. $$f ( x ) = \frac { 7 + 3 x + 2 x ^ { 2 } } { ( 1 - 2 x ) ( 1 + x ) ^ { 2 } } , \quad | x | > \frac { 1 } { 2 }$$
  1. Express \(\mathrm { f } ( x )\) in partial fractions.
  2. Show that $$\int _ { 1 } ^ { 2 } \mathrm { f } ( x ) \mathrm { d } x = p - \ln q$$ where \(p\) is rational and \(q\) is an integer.
OCR C4 Q5
5. $$f ( x ) = \frac { 15 - 17 x } { ( 2 + x ) ( 1 - 3 x ) ^ { 2 } } , \quad x \neq - 2 , \quad x \neq \frac { 1 } { 3 }$$
  1. Find the values of the constants \(A , B\) and \(C\) such that $$\mathrm { f } ( x ) = \frac { A } { 2 + x } + \frac { B } { 1 - 3 x } + \frac { C } { ( 1 - 3 x ) ^ { 2 } }$$
  2. Find the value of $$\int _ { - 1 } ^ { 0 } f ( x ) d x$$ giving your answer in the form \(p + \ln q\), where \(p\) and \(q\) are integers.
OCR C4 2011 January Q2
2
  1. Express \(\frac { 7 - 2 x } { ( x - 2 ) ^ { 2 } }\) in the form \(\frac { A } { x - 2 } + \frac { B } { ( x - 2 ) ^ { 2 } }\), where \(A\) and \(B\) are constants.
  2. Hence find the exact value of \(\int _ { 4 } ^ { 5 } \frac { 7 - 2 x } { ( x - 2 ) ^ { 2 } } \mathrm {~d} x\).
OCR C4 2009 June Q6
6 The expression \(\frac { 4 x } { ( x - 5 ) ( x - 3 ) ^ { 2 } }\) is denoted by \(\mathrm { f } ( x )\).
  1. Express f \(( x )\) in the form \(\frac { A } { x - 5 } + \frac { B } { x - 3 } + \frac { C } { ( x - 3 ) ^ { 2 } }\), where \(A , B\) and \(C\) are constants.
  2. Hence find the exact value of \(\int _ { 1 } ^ { 2 } \mathrm { f } ( x ) \mathrm { d } x\).
OCR C4 2010 June Q3
3 Express \(\frac { x ^ { 2 } } { ( x - 1 ) ^ { 2 } ( x - 2 ) }\) in partial fractions.
OCR C4 2012 June Q9
9
  1. Express \(\frac { x ^ { 2 } - x - 11 } { ( x + 1 ) ( x - 2 ) ^ { 2 } }\) in partial fractions.
  2. Find the exact value of \(\int _ { 3 } ^ { 4 } \frac { x ^ { 2 } - x - 11 } { ( x + 1 ) ( x - 2 ) ^ { 2 } } \mathrm {~d} x\), giving your answer in the form \(a + \ln b\), where \(a\) and \(b\) are rational numbers.
OCR C4 2013 June Q1
1 Express \(\frac { ( x - 7 ) ( x - 2 ) } { ( x + 2 ) ( x - 1 ) ^ { 2 } }\) in partial fractions.
OCR C4 2014 June Q9
9 Express \(\frac { 2 + x ^ { 2 } } { ( 1 + 2 x ) ( 1 - x ) ^ { 2 } }\) in partial fractions and hence show that \(\int _ { 0 } ^ { \frac { 1 } { 4 } } \frac { 2 + x ^ { 2 } } { ( 1 + 2 x ) ( 1 - x ) ^ { 2 } } \mathrm {~d} x = \frac { 1 } { 2 } \ln \frac { 3 } { 2 } + \frac { 1 } { 3 }\).
Edexcel C4 Q6
6. $$f ( x ) = \frac { 15 - 17 x } { ( 2 + x ) ( 1 - 3 x ) ^ { 2 } } , \quad x \neq - 2 , \quad x \neq \frac { 1 } { 3 }$$
  1. Find the values of the constants \(A , B\) and \(C\) such that $$\mathrm { f } ( x ) = \frac { A } { 2 + x } + \frac { B } { 1 - 3 x } + \frac { C } { ( 1 - 3 x ) ^ { 2 } }$$
  2. Find the value of $$\int _ { - 1 } ^ { 0 } f ( x ) d x$$ giving your answer in the form \(p + \ln q\), where \(p\) and \(q\) are integers.
    6. continued
Edexcel C4 Q3
3. $$f ( x ) = \frac { 7 + 3 x + 2 x ^ { 2 } } { ( 1 - 2 x ) ( 1 + x ) ^ { 2 } } , \quad | x | > \frac { 1 } { 2 }$$
  1. Express \(\mathrm { f } ( x )\) in partial fractions.
  2. Show that $$\int _ { 1 } ^ { 2 } \mathrm { f } ( x ) \mathrm { d } x = p - \ln q$$ where \(p\) is rational and \(q\) is an integer.
    3. continued
SPS SPS FM 2022 January Q4
4. Express \(\frac { ( x - 7 ) ( x - 2 ) } { ( x + 2 ) ( x - 1 ) ^ { 2 } }\) in partial fractions.
[0pt] [BLANK PAGE]
SPS SPS FM 2023 January Q3
3. Express \(\frac { x ^ { 2 } } { ( x - 1 ) ^ { 2 } ( x - 2 ) }\) in partial fractions.
[0pt] [BLANK PAGE]
SPS SPS FM 2023 February Q3
3. Express \(\frac { ( x - 7 ) ( x - 2 ) } { ( x + 2 ) ( x - 1 ) ^ { 2 } }\) in partial fractions.
[0pt] [BLANK PAGE]
SPS SPS SM Pure 2023 June Q3
3. Express in partial fractions, $$\frac { 9 x ^ { 2 } } { ( x - 1 ) ^ { 2 } ( 2 x + 1 ) }$$
SPS SPS SM Pure 2024 September Q1
  1. Express
$$f ( x ) = \frac { x ^ { 2 } + x - 5 } { ( x - 2 ) ( x - 1 ) ^ { 2 } }$$ in partial fractions. \section*{(Total for Question 1 is 3 marks)}
AQA C4 2009 January Q3
3
    1. Express \(\frac { 2 x + 7 } { x + 2 }\) in the form \(A + \frac { B } { x + 2 }\), where \(A\) and \(B\) are integers. (2 marks)
    2. Hence find \(\int \frac { 2 x + 7 } { x + 2 } \mathrm {~d} x\).
    1. Express \(\frac { 28 + 4 x ^ { 2 } } { ( 1 + 3 x ) ( 5 - x ) ^ { 2 } }\) in the form \(\frac { P } { 1 + 3 x } + \frac { Q } { 5 - x } + \frac { R } { ( 5 - x ) ^ { 2 } }\), where \(P , Q\) and \(R\) are constants.
    2. Hence find \(\int \frac { 28 + 4 x ^ { 2 } } { ( 1 + 3 x ) ( 5 - x ) ^ { 2 } } \mathrm {~d} x\).
AQA Paper 1 2020 June Q9
9
    1. By using a counter example, show that the answer obtained by Chloe cannot be correct.
      9
  1. (ii) Explain her mistake in Step 1.
    9
  2. Write \(\frac { 2 x ^ { 2 } + x } { ( x + 1 ) ( x + 2 ) ^ { 2 } }\) as partial fractions, with constant numerators.