Edexcel P2 2023 June — Question 10

Exam BoardEdexcel
ModuleP2 (Pure Mathematics 2)
Year2023
SessionJune
TopicIntegration by Substitution

  1. The curve \(C\) has equation
$$y = \frac { ( x - k ) ^ { 2 } } { \sqrt { x } } \quad x > 0$$ where \(k\) is a positive constant.
  1. Show that $$\int _ { 1 } ^ { 16 } \frac { ( x - k ) ^ { 2 } } { \sqrt { x } } \mathrm {~d} x = a k ^ { 2 } + b k + \frac { 2046 } { 5 }$$ where \(a\) and \(b\) are integers to be found. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{0e3b364c-151b-471d-acb6-01afb018fb75-26_645_670_904_699} \captionsetup{labelformat=empty} \caption{Figure 1}
    \end{figure} Figure 1 shows a sketch of the curve \(C\) and the line \(l\).
    Given that \(l\) intersects \(C\) at the point \(A ( 1,9 )\) and at the point \(B ( 16 , q )\) where \(q\) is a constant,
  2. show that \(k = 4\) The region \(R\), shown shaded in Figure 1, is bounded by \(C\) and \(l\)
    Using the answers to parts (a) and (b),
  3. find the area of region \(R\)