Definite integral with substitution

A question is this type if and only if it asks to evaluate a definite integral ∫ₐᵇ f(x)dx where substitution is needed, with no geometric interpretation or further application.

31 questions · Standard +0.0

Sort by: Default | Easiest first | Hardest first
WJEC Further Unit 4 2023 June Q11
14 marks Challenging +1.2
11. Evaluate the integrals
  1. \(\int _ { - 2 } ^ { 0 } \mathrm { e } ^ { 2 x } \sinh x \mathrm {~d} x\),
  2. \(\int _ { \frac { 3 } { 2 } } ^ { 3 } \frac { 5 } { ( x - 1 ) \left( x ^ { 2 } + 9 \right) } \mathrm { d } x\).
WJEC Further Unit 4 Specimen Q2
6 marks Challenging +1.2
  1. Evaluate the integral
$$\int _ { 0 } ^ { 1 } \frac { d x } { \sqrt { 2 x ^ { 2 } + 4 x + 6 } }$$
CAIE P3 2021 November Q9
10 marks Standard +0.3
  1. Find the \(x\)-coordinate of the stationary point of the curve with equation \(y = \mathrm { f } ( x )\).
  2. Using the substitution \(u = \sqrt { x }\), show that \(\int _ { 0 } ^ { 4 } \mathrm { f } ( x ) \mathrm { d } x = \frac { 1 } { 3 } \ln 5\).
AQA C3 2006 January Q3
10 marks Standard +0.3
3
    1. Given that \(\mathrm { f } ( x ) = x ^ { 4 } + 2 x\), find \(\mathrm { f } ^ { \prime } ( x )\).
    2. Hence, or otherwise, find \(\int \frac { 2 x ^ { 3 } + 1 } { x ^ { 4 } + 2 x } \mathrm {~d} x\).
    1. Use the substitution \(u = 2 x + 1\) to show that $$\int x \sqrt { 2 x + 1 } \mathrm {~d} x = \frac { 1 } { 4 } \int \left( u ^ { \frac { 3 } { 2 } } - u ^ { \frac { 1 } { 2 } } \right) \mathrm { d } u$$
    2. Hence show that \(\int _ { 0 } ^ { 4 } x \sqrt { 2 x + 1 } \mathrm {~d} x = 19.9\) correct to three significant figures.
AQA C3 2015 June Q7
7 marks Standard +0.3
7 Use the substitution \(u = 6 - x ^ { 2 }\) to find the value of \(\int _ { 1 } ^ { 2 } \frac { x ^ { 3 } } { \sqrt { 6 - x ^ { 2 } } } \mathrm {~d} x\), giving your answer in the form \(p \sqrt { 5 } + q \sqrt { 2 }\), where \(p\) and \(q\) are rational numbers.
[0pt] [7 marks]
AQA Paper 1 2024 June Q18
11 marks Moderate -0.3
18
  1. Use a suitable substitution to show that $$\int _ { 0 } ^ { 4 } ( 4 x + 1 ) ( 2 x + 1 ) ^ { \frac { 1 } { 2 } } \mathrm {~d} x$$ can be written as $$\frac { 1 } { 2 } \int _ { a } ^ { 9 } \left( 2 u ^ { \frac { 3 } { 2 } } - u ^ { \frac { 1 } { 2 } } \right) \mathrm { d } u$$ where \(a\) is a constant to be found.
    18
  2. Hence, or otherwise, show that $$\int _ { 0 } ^ { 4 } ( 4 x + 1 ) ( 2 x + 1 ) ^ { \frac { 1 } { 2 } } \mathrm {~d} x = \frac { 1322 } { 15 }$$ 18
  3. A graph has the equation $$y = ( 4 x + 1 ) \sqrt { 2 x + 1 }$$ A student uses four rectangles to approximate the area under the graph between the lines \(x = 0\) and \(x = 4\) The rectangles are all the same width.
    All the rectangles are drawn under the curve as shown in the diagram below.
    \includegraphics[max width=\textwidth, alt={}, center]{0320e0a6-adc0-440a-b1da-d1a49fe06179-32_1031_698_744_735} The total area of the four rectangles is \(A\) The student decides to improve their approximation by increasing the number of rectangles used. Explain why the value of the student's improved approximation will be greater than \(A\), but less than \(\frac { 1322 } { 15 }\)