Integration with substitution given

A question is this type if and only if it explicitly provides a substitution (like u = e^x + 1) to be used in evaluating an integral.

7 questions · Standard +0.4

Sort by: Default | Easiest first | Hardest first
CAIE P3 2017 June Q3
6 marks Standard +0.3
3 It is given that \(x = \ln ( 1 - y ) - \ln y\), where \(0 < y < 1\).
  1. Show that \(y = \frac { \mathrm { e } ^ { - x } } { 1 + \mathrm { e } ^ { - x } }\).
  2. Hence show that \(\int _ { 0 } ^ { 1 } y \mathrm {~d} x = \ln \left( \frac { 2 \mathrm { e } } { \mathrm { e } + 1 } \right)\).
Edexcel F3 2017 June Q7
8 marks Standard +0.8
  1. (a) Find
$$\int \frac { 5 + x } { \sqrt { 4 - 3 x ^ { 2 } } } \mathrm {~d} x$$ (b) Hence find the exact value of $$\int _ { 0 } ^ { 1 } \frac { 5 + x } { \sqrt { 4 - 3 x ^ { 2 } } } d x$$ giving your answer in the form \(p \pi \sqrt { 3 } + q\), where \(p\) and \(q\) are rational numbers to be found.
OCR MEI C3 Q1
18 marks Standard +0.8
1 \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{2437cecc-f084-4e49-ab36-1c132ba13267-1_480_1058_364_578} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure} Fig. 8 shows the curve \(y = \mathrm { f } ( x )\), where \(\mathrm { f } ( x ) = \frac { 1 } { \mathrm { e } ^ { x } + \mathrm { e } ^ { - x } + 2 }\).
  1. Show algebraically that \(\mathrm { f } ( x )\) is an even function, and state how this property relates to the curve \(y = \mathrm { f } ( x )\).
  2. Find \(\mathrm { f } ^ { \prime } ( x )\).
  3. Show that \(\mathrm { f } ( x ) = \frac { \mathrm { e } ^ { x } } { \left( \mathrm { e } ^ { x } + 1 \right) ^ { 2 } }\).
  4. Hence, using the substitution \(u = \mathrm { e } ^ { x } + 1\), or otherwise, find the exact area enclosed by the curve \(y = \mathrm { f } ( x )\), the \(x\)-axis, and the lines \(x = 0\) and \(x = 1\).
  5. Show that there is only one point of intersection of the curves \(y = \mathrm { f } ( x )\) and \(y = \frac { 1 } { 4 } \mathrm { e } ^ { x }\), and find its coordinates.
OCR MEI C4 Q3
19 marks Standard +0.3
3 Some years ago an island was populated by red squirrels and there were no grey squirrels. Then grey squirrels were introduced. The population \(x\), in thousands, of red squirrels is modelled by the equation $$x = \frac { a } { 1 + k t }$$ where \(t\) is the time in years, and \(a\) and \(k\) are constants. When \(t = 0 , x = 2.5\).
  1. Show that \(\frac { \mathrm { d } x } { \mathrm {~d} t } = - \frac { k x ^ { 2 } } { a }\).
  2. Given that the initial population of 2.5 thousand red squirrels reduces to 1.6 thousand after one year, calculate \(a\) and \(k\).
  3. What is the long-term population of red squirrels predicted by this model? The population \(y\), in thousands, of grey squirrels is modelled by the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} t } = 2 y - y ^ { 2 }$$ When \(t = 0 , y = 1\).
  4. Express \(\frac { 1 } { 2 y - y ^ { 2 } }\) in partial fractions.
  5. Hence show by integration that \(\ln \left( \frac { y } { 2 y } \right) = 2 t\). Show that \(y = \frac { 2 } { 1 + \mathrm { e } ^ { - 2 t } }\).
  6. What is the long-term population of grey squirrels predicted by this model?
Edexcel AEA 2022 June Q4
14 marks
4.Given that \(\mathrm { f } ( x ) = \mathrm { e } ^ { x ^ { 3 } - 2 x }\)
(a)find \(\mathrm { f } ^ { \prime } ( x )\) The curves \(C _ { 1 }\) and \(C _ { 2 }\) are defined by the functions g and h respectively,where $$\begin{array} { l l } \mathrm { g } ( x ) = 8 x ^ { 3 } \mathrm { e } ^ { x ^ { 3 } - 2 x } & x \in \mathbb { R } , x > 0 \\ \mathrm {~h} ( x ) = \left( 3 x ^ { 5 } + 4 x \right) \mathrm { e } ^ { x ^ { 3 } - 2 x } & x \in \mathbb { R } , x > 0 \end{array}$$ (b)Find the \(x\) coordinates of the points of intersection of \(C _ { 1 }\) and \(C _ { 2 }\) Given that \(C _ { 1 }\) lies above \(C _ { 2 }\) between these points of intersection,
(c)find the area of the region bounded by the curves between these two points.
Give your answer in the form \(A + B \mathrm { e } ^ { C }\) where \(A , B\) ,and \(C\) are exact real numbers to be found.
AQA C3 2012 January Q3
6 marks Moderate -0.3
3
  1. Given that \(y = 4 x ^ { 3 } - 6 x + 1\), find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\).
    (l mark)
  2. Hence find \(\int _ { 2 } ^ { 3 } \frac { 2 x ^ { 2 } - 1 } { 4 x ^ { 3 } - 6 x + 1 } \mathrm {~d} x\), giving your answer in the form \(p \ln q\), where \(p\) and \(q\) are rational numbers.
Edexcel CP1 Specimen Q6
9 marks Standard +0.3
6. $$\mathrm { f } ( x ) = \frac { x + 2 } { x ^ { 2 } + 9 }$$
  1. Show that $$\int \mathrm { f } ( x ) \mathrm { d } x = A \ln \left( x ^ { 2 } + 9 \right) + B \arctan \left( \frac { x } { 3 } \right) + c$$ where \(c\) is an arbitrary constant and \(A\) and \(B\) are constants to be found.
  2. Hence show that the mean value of \(\mathrm { f } ( x )\) over the interval \([ 0,3 ]\) is $$\frac { 1 } { 6 } \ln 2 + \frac { 1 } { 18 } \pi$$
  3. Use the answer to part (b) to find the mean value, over the interval \([ 0,3 ]\), of $$\mathrm { f } ( x ) + \ln k$$ where \(k\) is a positive constant, giving your answer in the form \(p + \frac { 1 } { 6 } \ln q\), where \(p\) and \(q\) are constants and \(q\) is in terms of \(k\).