OCR MEI C4 — Question 3

Exam BoardOCR MEI
ModuleC4 (Core Mathematics 4)
TopicStandard Integrals and Reverse Chain Rule

3 Some years ago an island was populated by red squirrels and there were no grey squirrels. Then grey squirrels were introduced. The population \(x\), in thousands, of red squirrels is modelled by the equation $$x = \frac { a } { 1 + k t }$$ where \(t\) is the time in years, and \(a\) and \(k\) are constants. When \(t = 0 , x = 2.5\).
  1. Show that \(\frac { \mathrm { d } x } { \mathrm {~d} t } = - \frac { k x ^ { 2 } } { a }\).
  2. Given that the initial population of 2.5 thousand red squirrels reduces to 1.6 thousand after one year, calculate \(a\) and \(k\).
  3. What is the long-term population of red squirrels predicted by this model? The population \(y\), in thousands, of grey squirrels is modelled by the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} t } = 2 y - y ^ { 2 }$$ When \(t = 0 , y = 1\).
  4. Express \(\frac { 1 } { 2 y - y ^ { 2 } }\) in partial fractions.
  5. Hence show by integration that \(\ln \left( \frac { y } { 2 y } \right) = 2 t\). Show that \(y = \frac { 2 } { 1 + \mathrm { e } ^ { - 2 t } }\).
  6. What is the long-term population of grey squirrels predicted by this model?
This paper (3 questions)
View full paper