Use trigonometric identity before integration

A question is this type if and only if it explicitly requires proving or using a trigonometric identity (like cos²x = (1+cos2x)/2 or tan²x = sec²x - 1) to enable integration.

28 questions · Standard +0.2

Sort by: Default | Easiest first | Hardest first
CAIE P2 2010 June Q4
6 marks Standard +0.3
4
  1. Show that \(\int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \cos 2 x \mathrm {~d} x = \frac { 1 } { 2 }\).
  2. By using an appropriate trigonometrical identity, find the exact value of $$\int _ { \frac { 1 } { 6 } \pi } ^ { \frac { 1 } { 3 } \pi } 3 \tan ^ { 2 } x \mathrm {~d} x$$
CAIE P2 2011 June Q6
8 marks Moderate -0.3
6
  1. Find \(\int 4 \mathrm { e } ^ { x } \left( 3 + \mathrm { e } ^ { 2 x } \right) \mathrm { d } x\).
  2. Show that \(\int _ { - \frac { 1 } { 4 } \pi } ^ { \frac { 1 } { 4 } \pi } \left( 3 + 2 \tan ^ { 2 } \theta \right) \mathrm { d } \theta = \frac { 1 } { 2 } ( 8 + \pi )\).
CAIE P2 2015 June Q6
9 marks Standard +0.3
6
\includegraphics[max width=\textwidth, alt={}, center]{cc051d68-7e21-4dc1-b34d-6fb7f12a52fd-3_401_586_817_778} The diagram shows part of the curve with equation $$y = 4 \sin ^ { 2 } x + 8 \sin x + 3$$ and its point of intersection \(P\) with the \(x\)-axis.
  1. Find the exact \(x\)-coordinate of \(P\).
  2. Show that the equation of the curve can be written $$y = 5 + 8 \sin x - 2 \cos 2 x$$ and use integration to find the exact area of the shaded region enclosed by the curve and the axes.
CAIE P2 2015 June Q6
9 marks Standard +0.3
6
\includegraphics[max width=\textwidth, alt={}, center]{3b217eb4-3bd3-4800-a913-749754bf109f-3_401_586_817_778} The diagram shows part of the curve with equation $$y = 4 \sin ^ { 2 } x + 8 \sin x + 3$$ and its point of intersection \(P\) with the \(x\)-axis.
  1. Find the exact \(x\)-coordinate of \(P\).
  2. Show that the equation of the curve can be written $$y = 5 + 8 \sin x - 2 \cos 2 x$$ and use integration to find the exact area of the shaded region enclosed by the curve and the axes.
CAIE P2 2016 June Q7
10 marks Standard +0.3
7
  1. Find \(\int \frac { 1 + \cos ^ { 4 } 2 x } { \cos ^ { 2 } 2 x } \mathrm {~d} x\).
  2. Without using a calculator, find the exact value of \(\int _ { 4 } ^ { 14 } \left( 2 + \frac { 6 } { 3 x - 2 } \right) \mathrm { d } x\), giving your answer in the form \(\ln \left( a \mathrm { e } ^ { b } \right)\), where \(a\) and \(b\) are integers.
CAIE P3 2012 June Q5
7 marks Standard +0.8
5
\includegraphics[max width=\textwidth, alt={}, center]{4c71f68a-efb9-4408-bf03-874e0d4426d5-2_458_807_1786_667} The diagram shows the curve $$y = 8 \sin \frac { 1 } { 2 } x - \tan \frac { 1 } { 2 } x$$ for \(0 \leqslant x < \pi\). The \(x\)-coordinate of the maximum point is \(\alpha\) and the shaded region is enclosed by the curve and the lines \(x = \alpha\) and \(y = 0\).
  1. Show that \(\alpha = \frac { 2 } { 3 } \pi\).
  2. Find the exact value of the area of the shaded region.
CAIE P3 2015 June Q5
8 marks Standard +0.3
5
  1. Find \(\int \left( 4 + \tan ^ { 2 } 2 x \right) \mathrm { d } x\).
  2. Find the exact value of \(\int _ { \frac { 1 } { 4 } \pi } ^ { \frac { 1 } { 2 } \pi } \frac { \sin \left( x + \frac { 1 } { 6 } \pi \right) } { \sin x } \mathrm {~d} x\).
CAIE P3 2009 November Q5
8 marks Standard +0.3
5
  1. Prove the identity \(\cos 4 \theta - 4 \cos 2 \theta + 3 \equiv 8 \sin ^ { 4 } \theta\).
  2. Using this result find, in simplified form, the exact value of $$\int _ { \frac { 1 } { 6 } \pi } ^ { \frac { 1 } { 3 } \pi } \sin ^ { 4 } \theta \mathrm {~d} \theta$$
CAIE P2 2019 June Q4
7 marks Moderate -0.3
4
  1. Find \(\int \tan ^ { 2 } 3 x \mathrm {~d} x\).
  2. Find the exact value of \(\int _ { 0 } ^ { 1 } \frac { \mathrm { e } ^ { 3 x } + 4 } { \mathrm { e } ^ { x } } \mathrm {~d} x\). Show all necessary working.
CAIE P2 2003 November Q7
11 marks Moderate -0.3
7
  1. By differentiating \(\frac { \cos x } { \sin x }\), show that if \(y = \cot x\) then \(\frac { \mathrm { d } y } { \mathrm {~d} x } = - \operatorname { cosec } ^ { 2 } x\).
  2. Hence show that \(\int _ { \frac { 1 } { 6 } \pi } ^ { \frac { 1 } { 2 } \pi } \operatorname { cosec } ^ { 2 } x \mathrm {~d} x = \sqrt { } 3\). By using appropriate trigonometrical identities, find the exact value of
  3. \(\int _ { \frac { 1 } { 6 } \pi } ^ { \frac { 1 } { 2 } \pi } \cot ^ { 2 } x \mathrm {~d} x\),
  4. \(\int _ { \frac { 1 } { 6 } \pi } ^ { \frac { 1 } { 2 } \pi } \frac { 1 } { 1 - \cos 2 x } \mathrm {~d} x\).
CAIE P2 2010 November Q4
6 marks Moderate -0.3
4
  1. Find \(\int \mathrm { e } ^ { 1 - 2 x } \mathrm {~d} x\).
  2. Express \(\sin ^ { 2 } 3 x\) in terms of \(\cos 6 x\) and hence find \(\int \sin ^ { 2 } 3 x \mathrm {~d} x\).
CAIE P2 2014 November Q3
7 marks Moderate -0.8
3
  1. Find \(\int 4 \cos ^ { 2 } \left( \frac { 1 } { 2 } \theta \right) \mathrm { d } \theta\).
  2. Find the exact value of \(\int _ { - 1 } ^ { 6 } \frac { 1 } { 2 x + 3 } \mathrm {~d} x\).
CAIE P2 2015 November Q5
7 marks Moderate -0.3
5
  1. Find \(\int \left( \tan ^ { 2 } x + \sin 2 x \right) \mathrm { d } x\).
  2. Find the exact value of \(\int _ { 0 } ^ { 1 } 3 \mathrm { e } ^ { 1 - 2 x } \mathrm {~d} x\).
CAIE P2 2016 November Q2
5 marks Standard +0.3
2
\includegraphics[max width=\textwidth, alt={}, center]{8b051aee-4920-42a0-8b74-cbfa9f3c1ab1-2_429_821_826_662} The variables \(x\) and \(y\) satisfy the equation \(y = K x ^ { p }\), where \(K\) and \(p\) are constants. The graph of \(\ln y\) against \(\ln x\) is a straight line passing through the points \(( 1.28,3.69 )\) and \(( 2.11,4.81 )\), as shown in the diagram. Find the values of \(K\) and \(p\) correct to 2 decimal places.
  1. Find \(\int \tan ^ { 2 } 4 x \mathrm {~d} x\).
  2. Without using a calculator, find the exact value of \(\int _ { 0 } ^ { \frac { 1 } { 12 } \pi } ( 4 \cos 2 x + 6 \sin 3 x ) \mathrm { d } x\).
CAIE P2 2017 November Q4
8 marks Standard +0.3
4
  1. Find \(\int \frac { 4 + \sin ^ { 2 } \theta } { 1 - \sin ^ { 2 } \theta } \mathrm {~d} \theta\).
  2. Given that \(\int _ { 0 } ^ { a } \frac { 2 } { 3 x + 1 } \mathrm {~d} x = \ln 16\), find the value of the positive constant \(a\).
CAIE P2 2018 November Q6
11 marks Standard +0.3
6
  1. Show that \(\int _ { 1 } ^ { 6 } \frac { 12 } { 3 x + 2 } \mathrm {~d} x = \ln 256\).
  2. Find the exact value of \(\int _ { 0 } ^ { \frac { 1 } { 6 } \pi } \left( 8 \sin ^ { 2 } x + \tan ^ { 2 } 2 x \right) \mathrm { d } x\), showing all necessary working.
CAIE P2 2019 November Q6
9 marks Standard +0.3
6
  1. Show that \(\int _ { 2 } ^ { 18 } \frac { 3 } { 2 x } \mathrm {~d} x = \ln 27\).
  2. Find the exact value of \(\int _ { 0 } ^ { \frac { 1 } { 6 } \pi } 4 \sin ^ { 2 } \left( \frac { 3 } { 2 } x \right) \mathrm { d } x\). Show all necessary working.
CAIE P2 Specimen Q5
7 marks Moderate -0.3
5
  1. Find \(\int \left( \tan ^ { 2 } x + \sin 2 x \right) \mathrm { d } x\).
  2. Find the exact value of \(\int _ { 0 } ^ { 1 } 3 \mathrm { e } ^ { 1 - 2 x } \mathrm {~d} x\).
Edexcel P3 2021 October Q10
7 marks Standard +0.3
10. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{9b0b8db0-79fd-4ad5-88c9-737447d9f894-30_515_673_255_639} \captionsetup{labelformat=empty} \caption{Figure 4}
\end{figure} Figure 4 shows a sketch of part of the curve with equation $$y = ( 1 + 2 \cos 2 x ) ^ { 2 }$$
  1. Show that $$( 1 + 2 \cos 2 x ) ^ { 2 } \equiv p + q \cos 2 x + r \cos 4 x$$ where \(p , q\) and \(r\) are constants to be found. The curve touches the positive \(x\)-axis for the second time when \(x = a\), as shown in Figure 4. The regions bounded by the curve, the \(y\)-axis and the \(x\)-axis up to \(x = a\) are shown shaded in Figure 4.
  2. Find, using algebraic integration and making your method clear, the exact total area of the shaded regions. Write your answer in simplest form. \includegraphics[max width=\textwidth, alt={}, center]{9b0b8db0-79fd-4ad5-88c9-737447d9f894-32_2255_51_313_1980}
Edexcel P3 2023 October Q3
6 marks Moderate -0.3
  1. (a) Using the identity for \(\cos ( A + B )\), prove that
$$\cos 2 A \equiv 2 \cos ^ { 2 } A - 1$$ (b) Hence, using algebraic integration, find the exact value of $$\int _ { \frac { \pi } { 12 } } ^ { \frac { \pi } { 8 } } \left( 5 - 4 \cos ^ { 2 } 3 x \right) d x$$
OCR C4 Q8
12 marks Challenging +1.2
8. (i) Find \(\int \tan ^ { 2 } x \mathrm {~d} x\).
(ii) Show that $$\int \tan x \mathrm {~d} x = \ln | \sec x | + c$$ where \(c\) is an arbitrary constant.
\includegraphics[max width=\textwidth, alt={}, center]{1e93a786-6105-4c69-a79a-a5f6e6c4aa0a-2_554_784_1484_507} The diagram shows part of the curve with equation \(y = x ^ { \frac { 1 } { 2 } } \tan x\).
The shaded region bounded by the curve, the \(x\)-axis and the line \(x = \frac { \pi } { 3 }\) is rotated through \(360 ^ { \circ }\) about the \(x\)-axis.
(iii) Show that the volume of the solid formed is \(\frac { 1 } { 18 } \pi ^ { 2 } ( 6 \sqrt { 3 } - \pi ) - \pi \ln 2\).
Edexcel AEA 2011 June Q2
7 marks Challenging +1.2
2.Given that $$\int _ { 0 } ^ { \frac { \pi } { 2 } } \left( 1 + \tan \left[ \frac { 1 } { 2 } x \right] \right) ^ { 2 } \mathrm {~d} x = a + \ln b$$ find the value of \(a\) and the value of \(b\) .
Edexcel AEA 2017 Specimen Q5
13 marks Challenging +1.8
5. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{05b21c5d-5958-4267-b1e6-3d1ed20d5609-16_745_862_258_667} \captionsetup{labelformat=empty} \caption{Figure 3}
\end{figure} Show that the area of the finite region between the curves \(y = \tan ^ { 2 } x\) and \(y = 4 \cos 2 x - 1\) in the interval \(- \frac { \pi } { 2 } < x < \frac { \pi } { 2 }\), shown shaded in Figure 3, is given by $$2 \sqrt { 2 \sqrt { 3 } } - 2 \sqrt { 2 \sqrt { 3 } - 3 }$$
\includegraphics[max width=\textwidth, alt={}]{05b21c5d-5958-4267-b1e6-3d1ed20d5609-16_2255_51_315_1987}
OCR C4 2010 January Q3
5 marks Moderate -0.3
3 By expressing \(\cos 2 x\) in terms of \(\cos x\), find the exact value of \(\int _ { \frac { 1 } { 4 } \pi } ^ { \frac { 1 } { 3 } \pi } \frac { \cos 2 x } { \cos ^ { 2 } x } \mathrm {~d} x\).
OCR C4 2013 June Q5
7 marks Standard +0.3
5
  1. Show that \(\frac { 1 } { 1 - \tan x } - \frac { 1 } { 1 + \tan x } \equiv \tan 2 x\).
  2. Hence evaluate \(\int _ { \frac { 1 } { 12 } \pi } ^ { \frac { 1 } { 6 } \pi } \left( \frac { 1 } { 1 - \tan x } - \frac { 1 } { 1 + \tan x } \right) \mathrm { d } x\), giving your answer in the form \(a \ln b\).