A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Pure
Standard Integrals and Reverse Chain Rule
Q4
CAIE P2 2010 June — Question 4
Exam Board
CAIE
Module
P2 (Pure Mathematics 2)
Year
2010
Session
June
Topic
Standard Integrals and Reverse Chain Rule
4
Show that \(\int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \cos 2 x \mathrm {~d} x = \frac { 1 } { 2 }\).
By using an appropriate trigonometrical identity, find the exact value of $$\int _ { \frac { 1 } { 6 } \pi } ^ { \frac { 1 } { 3 } \pi } 3 \tan ^ { 2 } x \mathrm {~d} x$$
This paper
(8 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8