CAIE P2 2003 November — Question 7

Exam BoardCAIE
ModuleP2 (Pure Mathematics 2)
Year2003
SessionNovember
TopicStandard Integrals and Reverse Chain Rule

7
  1. By differentiating \(\frac { \cos x } { \sin x }\), show that if \(y = \cot x\) then \(\frac { \mathrm { d } y } { \mathrm {~d} x } = - \operatorname { cosec } ^ { 2 } x\).
  2. Hence show that \(\int _ { \frac { 1 } { 6 } \pi } ^ { \frac { 1 } { 2 } \pi } \operatorname { cosec } ^ { 2 } x \mathrm {~d} x = \sqrt { } 3\). By using appropriate trigonometrical identities, find the exact value of
  3. \(\int _ { \frac { 1 } { 6 } \pi } ^ { \frac { 1 } { 2 } \pi } \cot ^ { 2 } x \mathrm {~d} x\),
  4. \(\int _ { \frac { 1 } { 6 } \pi } ^ { \frac { 1 } { 2 } \pi } \frac { 1 } { 1 - \cos 2 x } \mathrm {~d} x\).