Integrate after algebraic manipulation

A question is this type if and only if it requires expanding, simplifying, or rewriting an expression (like (a+b)², quotients, or using identities) before integration.

23 questions · Moderate -0.6

Sort by: Default | Easiest first | Hardest first
CAIE P1 2010 November Q1
3 marks Easy -1.2
1 Find \(\int \left( x + \frac { 1 } { x } \right) ^ { 2 } \mathrm {~d} x\).
CAIE P2 2010 November Q3
5 marks Moderate -0.8
3 Show that \(\int _ { 0 } ^ { 1 } \left( \mathrm { e } ^ { x } + 1 \right) ^ { 2 } \mathrm {~d} x = \frac { 1 } { 2 } \mathrm { e } ^ { 2 } + 2 \mathrm { e } - \frac { 3 } { 2 }\).
CAIE P2 2013 November Q6
9 marks Moderate -0.3
6
  1. Find
    1. \(\int \frac { \mathrm { e } ^ { 2 x } + 6 } { \mathrm { e } ^ { 2 x } } \mathrm {~d} x\),
    2. \(\int 3 \cos ^ { 2 } x \mathrm {~d} x\).
  2. Use the trapezium rule with 2 intervals to estimate the value of $$\int _ { 1 } ^ { 2 } \frac { 6 } { \ln ( x + 2 ) } \mathrm { d } x$$ giving your answer correct to 2 decimal places.
    1. Express \(3 \cos \theta + \sin \theta\) in the form \(R \cos ( \theta - \alpha )\), where \(R > 0\) and \(0 ^ { \circ } < \alpha < 90 ^ { \circ }\), giving the exact value of \(R\) and the value of \(\alpha\) correct to 2 decimal places.
    2. Hence solve the equation $$3 \cos 2 x + \sin 2 x = 2$$ giving all solutions in the interval \(0 ^ { \circ } \leqslant x \leqslant 360 ^ { \circ }\).
CAIE P2 2019 November Q2
5 marks Moderate -0.8
2 Find the exact value of \(\int _ { 1 } ^ { 2 } \left( 2 \mathrm { e } ^ { 2 x } - 1 \right) ^ { 2 } \mathrm {~d} x\). Show all necessary working.
Edexcel P1 2023 January Q3
5 marks Moderate -0.8
  1. Find
$$\int \frac { 4 x ^ { 5 } + 3 } { 2 x ^ { 2 } } \mathrm {~d} x$$ giving your answer in simplest form.
Edexcel P1 2024 January Q1
5 marks Moderate -0.3
  1. Find
$$\int ( 2 x - 5 ) ( 3 x + 2 ) ( 2 x + 5 ) \mathrm { d } x$$ writing your answer in simplest form.
Edexcel P1 2019 June Q4
5 marks Moderate -0.8
  1. Find
$$\int \frac { 4 x ^ { 2 } + 1 } { 2 \sqrt { x } } d x$$ giving the answer in its simplest form. $$\int \frac { 4 x ^ { 2 } + 1 } { 2 \sqrt { x } } \mathrm {~d} x$$ giving the answer in its simplest form.
Edexcel P1 2021 June Q4
6 marks Moderate -0.8
4. Find $$\int \frac { ( 3 \sqrt { x } + 2 ) ( x - 5 ) } { 4 \sqrt { x } } d x$$ writing each term in simplest form.
Edexcel C12 2016 June Q6
7 marks Moderate -0.8
6. (a) Show that \(\frac { x ^ { 2 } - 4 } { 2 \sqrt { } x }\) can be written in the form \(A x ^ { p } + B x ^ { q }\), where \(A , B , p\) and \(q\) are constants to be determined.
(b) Hence find $$\int \frac { x ^ { 2 } - 4 } { 2 \sqrt { x } } \mathrm {~d} x , \quad x > 0$$ giving your answer in its simplest form.
Edexcel C12 2017 October Q3
6 marks Moderate -0.8
3. (a) Express \(\frac { x ^ { 3 } + 4 } { 2 x ^ { 2 } }\) in the form \(A x ^ { p } + B x ^ { q }\), where \(A , B , p\) and \(q\) are constants.
(b) Hence find $$\int \frac { x ^ { 3 } + 4 } { 2 x ^ { 2 } } d x$$ simplifying your answer.
Edexcel C1 2007 January Q6
5 marks Moderate -0.8
6. (a) Show that \(( 4 + 3 \sqrt { } x ) ^ { 2 }\) can be written as \(16 + k \sqrt { } x + 9 x\), where \(k\) is a constant to be found.
(b) Find \(\int ( 4 + 3 \sqrt { } x ) ^ { 2 } \mathrm {~d} x\).
Edexcel C1 2008 June Q11
8 marks Moderate -0.8
  1. The gradient of a curve \(C\) is given by \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { \left( x ^ { 2 } + 3 \right) ^ { 2 } } { x ^ { 2 } } , x \neq 0\).
    1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = x ^ { 2 } + 6 + 9 x ^ { - 2 }\).
    The point \(( 3,20 )\) lies on \(C\).
  2. Find an equation for the curve \(C\) in the form \(y = \mathrm { f } ( x )\).
Edexcel C1 2013 June Q9
10 marks Moderate -0.8
9. $$f ^ { \prime } ( x ) = \frac { \left( 3 - x ^ { 2 } \right) ^ { 2 } } { x ^ { 2 } } , \quad x \neq 0$$
  1. Show that \(\mathrm { f } ^ { \prime } ( x ) = 9 x ^ { - 2 } + A + B x ^ { 2 }\),
    where \(A\) and \(B\) are constants to be found.
  2. Find \(\mathrm { f } ^ { \prime \prime } ( x )\). Given that the point \(( - 3,10 )\) lies on the curve with equation \(y = \mathrm { f } ( x )\),
  3. find \(\mathrm { f } ( x )\).
Edexcel P3 2021 January Q1
3 marks Moderate -0.8
  1. Find
$$\int \frac { x ^ { 2 } - 5 } { 2 x ^ { 3 } } \mathrm {~d} x \quad x > 0$$ giving your answer in simplest form.
Edexcel P3 2023 January Q8
5 marks Moderate -0.8
  1. Find, in simplest form,
$$\int ( 2 \cos x - \sin x ) ^ { 2 } d x$$
Edexcel F3 2021 January Q8
9 marks Challenging +1.2
  1. The curve \(C\) has equation
$$y = 2 + \ln \left( 1 - x ^ { 2 } \right) \quad \frac { 1 } { 2 } \leqslant x \leqslant \frac { 3 } { 4 }$$
  1. Show that the length of the curve \(C\) is given by $$\int _ { \frac { 1 } { 2 } } ^ { \frac { 3 } { 4 } } \left( \frac { 1 + x ^ { 2 } } { 1 - x ^ { 2 } } \right) \mathrm { d } x$$
  2. Hence, using algebraic integration, show that the length of the curve \(C\) is \(p + \ln q\) where \(p\) and \(q\) are rational numbers to be determined.
OCR C2 Q2
6 marks Standard +0.3
2. Given that $$y = 2 x ^ { \frac { 3 } { 2 } } - 1 ,$$ find $$\int y ^ { 2 } \mathrm {~d} x .$$
OCR MEI C3 Q2
4 marks Moderate -0.8
2
  1. Expand \(\left( \mathrm { e } ^ { x } + \mathrm { e } ^ { - x } \right) ^ { 2 }\).
  2. Hence find \(\int \left( \mathrm { e } ^ { x } + \mathrm { e } ^ { - x } \right) ^ { 2 } \mathrm {~d} x\).
Edexcel AS Paper 1 2024 June Q1
4 marks Moderate -0.8
  1. Find
$$\int \frac { 2 \sqrt { x } - 3 } { x ^ { 2 } } \mathrm {~d} x$$ giving your answer in simplest form.
Edexcel AS Paper 1 2021 November Q3
4 marks Moderate -0.8
  1. Find
$$\int \frac { 3 x ^ { 4 } - 4 } { 2 x ^ { 3 } } d x$$ writing your answer in simplest form.
Edexcel Paper 1 2023 June Q1
4 marks Moderate -0.8
  1. Find
$$\int \frac { x ^ { \frac { 1 } { 2 } } ( 2 x - 5 ) } { 3 } \mathrm {~d} x$$ writing each term in simplest form.
OCR MEI AS Paper 2 2019 June Q7
8 marks Moderate -0.8
7
  1. Find \(\int x ^ { 3 } \left( 15 x + \frac { 11 } { \sqrt [ 3 ] { x } } \right) \mathrm { d } x\).
  2. Show that \(\int _ { 0 } ^ { 8 } x ^ { 3 } \left( 15 x + \frac { 11 } { \sqrt [ 3 ] { x } } \right) \mathrm { d } x = a \times 2 ^ { 11 }\), where \(a\) is a positive integer to be determined.
AQA C4 2014 June Q2
7 marks Moderate -0.3
2
  1. Given that \(\frac { 4 x ^ { 3 } - 2 x ^ { 2 } + 16 x - 3 } { 2 x ^ { 2 } - x + 2 }\) can be expressed as \(A x + \frac { B ( 4 x - 1 ) } { 2 x ^ { 2 } - x + 2 }\), find the values of the constants \(A\) and \(B\).
  2. The gradient of a curve is given by $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 4 x ^ { 3 } - 2 x ^ { 2 } + 16 x - 3 } { 2 x ^ { 2 } - x + 2 }$$ The point \(( - 1,2 )\) lies on the curve. Find the equation of the curve.
    [0pt] [4 marks]