Prove identity then solve equation

A question is this type if and only if it has multiple parts where the first part proves a trigonometric identity, and subsequent parts use that identity to solve trigonometric equations (not integrals or exact value evaluations).

17 questions · Standard +0.3

Sort by: Default | Easiest first | Hardest first
CAIE P2 2024 June Q4
7 marks Standard +0.8
4
  1. Show that \(3 \tan 2 \theta + \tan \left( \theta + 45 ^ { \circ } \right) \equiv \frac { \tan ^ { 2 } \theta + 8 \tan \theta + 1 } { 1 - \tan ^ { 2 } \theta }\).
  2. Hence solve the equation \(3 \tan 2 \theta + \tan \left( \theta + 45 ^ { \circ } \right) = 4\) for \(0 ^ { \circ } < \theta < 180 ^ { \circ }\).
CAIE P2 2006 June Q2
5 marks Moderate -0.3
2
  1. Prove the identity $$\cos \left( x + 30 ^ { \circ } \right) + \sin \left( x + 60 ^ { \circ } \right) \equiv ( \sqrt { } 3 ) \cos x$$
  2. Hence solve the equation $$\cos \left( x + 30 ^ { \circ } \right) + \sin \left( x + 60 ^ { \circ } \right) = 1$$ for \(0 ^ { \circ } < x < 90 ^ { \circ }\).
CAIE P2 2010 June Q8
9 marks Standard +0.3
8
  1. Prove the identity $$\sin \left( x - 30 ^ { \circ } \right) + \cos \left( x - 60 ^ { \circ } \right) \equiv ( \sqrt { } 3 ) \sin x$$
  2. Hence solve the equation $$\sin \left( x - 30 ^ { \circ } \right) + \cos \left( x - 60 ^ { \circ } \right) = \frac { 1 } { 2 } \sec x$$ for \(0 ^ { \circ } < x < 360 ^ { \circ }\).
CAIE P2 2013 June Q8
9 marks Standard +0.8
8
  1. Prove the identity $$\frac { 1 } { \sin \left( x - 60 ^ { \circ } \right) + \cos \left( x - 30 ^ { \circ } \right) } \equiv \operatorname { cosec } x$$
  2. Hence solve the equation $$\frac { 2 } { \sin \left( x - 60 ^ { \circ } \right) + \cos \left( x - 30 ^ { \circ } \right) } = 3 \cot ^ { 2 } x - 2$$ for \(0 ^ { \circ } < x < 360 ^ { \circ }\).
CAIE P3 2005 June Q6
8 marks Standard +0.3
6
  1. Prove the identity $$\cos 4 \theta + 4 \cos 2 \theta \equiv 8 \cos ^ { 4 } \theta - 3$$
  2. Hence solve the equation $$\cos 4 \theta + 4 \cos 2 \theta = 2$$ for \(0 ^ { \circ } \leqslant \theta \leqslant 360 ^ { \circ }\).
CAIE P3 2016 June Q5
8 marks Standard +0.3
5
  1. Prove the identity \(\cos 4 \theta - 4 \cos 2 \theta \equiv 8 \sin ^ { 4 } \theta - 3\).
  2. Hence solve the equation $$\cos 4 \theta = 4 \cos 2 \theta + 3$$ for \(0 ^ { \circ } \leqslant \theta \leqslant 360 ^ { \circ }\).
CAIE P2 2006 November Q4
7 marks Standard +0.3
4
  1. Prove the identity $$\tan \left( x + 45 ^ { \circ } \right) - \tan \left( 45 ^ { \circ } - x \right) \equiv 2 \tan 2 x .$$
  2. Hence solve the equation $$\tan \left( x + 45 ^ { \circ } \right) - \tan \left( 45 ^ { \circ } - x \right) = 2 ,$$ for \(0 ^ { \circ } \leqslant x \leqslant 180 ^ { \circ }\).
CAIE P3 2023 November Q7
8 marks Standard +0.3
7
  1. By expressing \(3 \theta\) as \(2 \theta + \theta\), prove the identity \(\cos 3 \theta \equiv 4 \cos ^ { 3 } \theta - 3 \cos \theta\).
  2. Hence solve the equation $$\cos 3 \theta + \cos \theta \cos 2 \theta = \cos ^ { 2 } \theta$$ for \(0 ^ { \circ } \leqslant \theta \leqslant 180 ^ { \circ }\).
OCR C3 Q7
9 marks Standard +0.3
7. (i) Prove that, for \(\cos x \neq 0\), $$\sin 2 x - \tan x \equiv \tan x \cos 2 x$$ (ii) Hence, or otherwise, solve the equation $$\sin 2 x - \tan x = 2 \cos 2 x$$ for \(x\) in the interval \(0 \leq x \leq 180 ^ { \circ }\).
OCR C3 Q3
8 marks Standard +0.3
3. (i) Use the identity for \(\sin ( A + B )\) to show that $$\sin 3 x \equiv 3 \sin x - 4 \sin ^ { 3 } x$$ (ii) Hence find, in terms of \(\pi\), the solutions of the equation $$\sin 3 x - \sin x = 0$$ for \(x\) in the interval \(0 \leq x < 2 \pi\).
OCR C3 Q4
9 marks Moderate -0.3
  1. (i) Use the identity for \(\cos ( A + B )\) to prove that
$$\cos 2 x \equiv 2 \cos ^ { 2 } x - 1$$ (ii) Prove that, for \(\cos x \neq 0\), $$2 \cos x - \sec x \equiv \sec x \cos 2 x$$ (iii) Hence, or otherwise, find the values of \(x\) in the interval \(0 \leq x \leq 180 ^ { \circ }\) for which $$2 \cos x - \sec x \equiv 2 \cos 2 x$$
OCR MEI C4 2010 January Q2
1 marks Standard +0.3
2 Show that \(\cot 2 \theta = \frac { 1 - \tan ^ { 2 } \theta } { 2 \tan \theta }\).
Hence solve the equation $$\cot 2 \theta = 1 + \tan \theta \quad \text { for } 0 ^ { \circ } < \theta < 360 ^ { \circ }$$
OCR MEI C4 2014 June Q4
8 marks Standard +0.3
4
  1. Show that \(\cos ( \alpha + \beta ) = \frac { 1 - \tan \alpha \tan \beta } { \sec \alpha \sec \beta }\).
  2. Hence show that \(\cos 2 \alpha = \frac { 1 - \tan ^ { 2 } \alpha } { 1 + \tan ^ { 2 } \alpha }\).
  3. Hence or otherwise solve the equation \(\frac { 1 - \tan ^ { 2 } \theta } { 1 + \tan ^ { 2 } \theta } = \frac { 1 } { 2 }\) for \(0 ^ { \circ } \leqslant \theta \leqslant 180 ^ { \circ }\).
Edexcel PMT Mocks Q10
7 marks Standard +0.3
10. a. Show that $$\sin 3 A \equiv 3 \sin A - 4 \sin ^ { 3 } A$$ b. Hence solve, for \(- \frac { \pi } { 2 } \leq \theta \leq \frac { \pi } { 2 }\) the equation $$1 + \sin 3 \theta = \cos ^ { 2 } \theta$$
Edexcel Paper 1 2021 October Q10
8 marks
  1. In this question you should show all stages of your working.
Solutions relying entirely on calculator technology are not acceptable.
  1. Given that \(1 + \cos 2 \theta + \sin 2 \theta \neq 0\) prove that $$\frac { 1 - \cos 2 \theta + \sin 2 \theta } { 1 + \cos 2 \theta + \sin 2 \theta } \equiv \tan \theta$$
  2. Hence solve, for \(0 < x < 180 ^ { \circ }\) $$\frac { 1 - \cos 4 x + \sin 4 x } { 1 + \cos 4 x + \sin 4 x } = 3 \sin 2 x$$ giving your answers to one decimal place where appropriate.
Edexcel Paper 2 2018 June Q12
9 marks Standard +0.3
  1. (a) Prove that
$$1 - \cos 2 \theta \equiv \tan \theta \sin 2 \theta , \quad \theta \neq \frac { ( 2 n + 1 ) \pi } { 2 } , \quad n \in \mathbb { Z }$$ (b) Hence solve, for \(- \frac { \pi } { 2 } < x < \frac { \pi } { 2 }\), the equation $$\left( \sec ^ { 2 } x - 5 \right) ( 1 - \cos 2 x ) = 3 \tan ^ { 2 } x \sin 2 x$$ Give any non-exact answer to 3 decimal places where appropriate.
Edexcel Paper 2 2020 October Q10
8 marks Standard +0.3
  1. In this question you must show all stages of your working.
Solutions relying entirely on calculator technology are not acceptable.
  1. Show that $$\cos 3 A \equiv 4 \cos ^ { 3 } A - 3 \cos A$$
  2. Hence solve, for \(- 90 ^ { \circ } \leqslant x \leqslant 180 ^ { \circ }\), the equation $$1 - \cos 3 x = \sin ^ { 2 } x$$