A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Pure
Addition & Double Angle Formulae
Q4
OCR MEI C4 2014 June — Question 4
Exam Board
OCR MEI
Module
C4 (Core Mathematics 4)
Year
2014
Session
June
Topic
Addition & Double Angle Formulae
4
Show that \(\cos ( \alpha + \beta ) = \frac { 1 - \tan \alpha \tan \beta } { \sec \alpha \sec \beta }\).
Hence show that \(\cos 2 \alpha = \frac { 1 - \tan ^ { 2 } \alpha } { 1 + \tan ^ { 2 } \alpha }\).
Hence or otherwise solve the equation \(\frac { 1 - \tan ^ { 2 } \theta } { 1 + \tan ^ { 2 } \theta } = \frac { 1 } { 2 }\) for \(0 ^ { \circ } \leqslant \theta \leqslant 180 ^ { \circ }\).
This paper
(7 questions)
View full paper
Q1
Q3
Q4
Q5
Q6
Q7
Q8