Sketch and solve graphically

Sketch trigonometric graphs and use them to solve equations or inequalities.

21 questions · Moderate -0.8

Sort by: Default | Easiest first | Hardest first
CAIE P1 2018 June Q10
8 marks Moderate -0.3
10
  1. Solve the equation \(2 \cos x + 3 \sin x = 0\), for \(0 ^ { \circ } \leqslant x \leqslant 360 ^ { \circ }\).
  2. Sketch, on the same diagram, the graphs of \(y = 2 \cos x\) and \(y = - 3 \sin x\) for \(0 ^ { \circ } \leqslant x \leqslant 360 ^ { \circ }\).
  3. Use your answers to parts (i) and (ii) to find the set of values of \(x\) for \(0 ^ { \circ } \leqslant x \leqslant 360 ^ { \circ }\) for which \(2 \cos x + 3 \sin x > 0\).
Edexcel C12 2014 January Q10
9 marks Moderate -0.8
10. The curve \(C\) has equation \(y = \cos \left( x - \frac { \pi } { 3 } \right) , 0 \leqslant x \leqslant 2 \pi\)
  1. In the space below, sketch the curve \(C\).
  2. Write down the exact coordinates of the points at which \(C\) meets the coordinate axes.
  3. Solve, for \(x\) in the interval \(0 \leqslant x \leqslant 2 \pi\), $$\cos \left( x - \frac { \pi } { 3 } \right) = \frac { 1 } { \sqrt { 2 } }$$ giving your answers in the form \(k \pi\), where \(k\) is a rational number.
Edexcel C12 2015 January Q11
8 marks Moderate -0.8
11. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{3b99072a-cd16-4c1d-9e44-085926a3ba24-16_608_952_267_495} \captionsetup{labelformat=empty} \caption{Figure 4}
\end{figure} Figure 4 shows a sketch of the curve \(C\) with equation \(y = \sin \left( x - 60 ^ { \circ } \right) , - 360 ^ { \circ } \leqslant x \leqslant 360 ^ { \circ }\)
  1. Write down the exact coordinates of the points at which \(C\) meets the two coordinate axes.
  2. Solve, for \(- 360 ^ { \circ } \leqslant x \leqslant 360 ^ { \circ }\), $$4 \sin \left( x - 60 ^ { \circ } \right) = \sqrt { 6 } - \sqrt { 2 }$$ showing each stage of your working.
Edexcel C12 2016 June Q10
9 marks Moderate -0.8
10. The curve \(C\) has equation \(y = \sin \left( x + \frac { \pi } { 4 } \right) , \quad 0 \leqslant x \leqslant 2 \pi\)
  1. On the axes below, sketch the curve \(C\).
  2. Write down the exact coordinates of all the points at which the curve \(C\) meets or intersects the \(x\)-axis and the \(y\)-axis.
  3. Solve, for \(0 \leqslant x \leqslant 2 \pi\), the equation $$\sin \left( x + \frac { \pi } { 4 } \right) = \frac { \sqrt { 3 } } { 2 }$$ giving your answers in the form \(k \pi\), where \(k\) is a rational number. \includegraphics[max width=\textwidth, alt={}, center]{aa75f1c1-ee97-4fee-af98-957e6a3fbba1-14_677_1031_1446_445}
Edexcel C2 2007 June Q9
10 marks Moderate -0.8
9. (a) Sketch, for \(0 \leqslant x \leqslant 2 \pi\), the graph of \(y = \sin \left( x + \frac { \pi } { 6 } \right)\).
(b) Write down the exact coordinates of the points where the graph meets the coordinate axes.
(c) Solve, for \(0 \leqslant x \leqslant 2 \pi\), the equation $$\sin \left( x + \frac { \pi } { 6 } \right) = 0.65$$ giving your answers in radians to 2 decimal places.
OCR MEI C2 2005 January Q3
4 marks Moderate -0.8
3 Sketch the graph of \(y = \sin x\) for \(0 ^ { \circ } \leqslant x \leqslant 360 ^ { \circ }\).
Solve the equation \(\sin x = - 0.2\) for \(0 ^ { \circ } \leqslant x \leqslant 360 ^ { \circ }\).
OCR MEI C2 2006 January Q5
5 marks Moderate -0.8
5
  1. Sketch the graph of \(y = \tan x\) for \(0 ^ { \circ } \leqslant x \leqslant 360 ^ { \circ }\).
  2. Solve the equation \(4 \sin x = 3 \cos x\) for \(0 ^ { \circ } \leqslant x \leqslant 360 ^ { \circ }\).
OCR MEI C2 2007 January Q6
4 marks Easy -1.2
6 Sketch the curve \(y = \sin x\) for \(0 ^ { \circ } \leqslant x \leqslant 360 ^ { \circ }\).
Solve the equation \(\sin x = - 0.68\) for \(0 ^ { \circ } \leqslant x \leqslant 360 ^ { \circ }\).
OCR MEI C2 2008 January Q6
5 marks Easy -1.2
6
  1. Sketch the graph of \(y = \sin \theta\) for \(0 \leqslant \theta \leqslant 2 \pi\).
  2. Solve the equation \(2 \sin \theta = - 1\) for \(0 \leqslant \theta \leqslant 2 \pi\). Give your answers in the form \(k \pi\).
OCR MEI C2 2006 June Q7
5 marks Moderate -0.8
7
  1. Sketch the graph of \(y = \cos x\) for \(0 ^ { \circ } \leqslant x \leqslant 360 ^ { \circ }\).
    On the same axes, sketch the graph of \(y = \cos 2 x\) for \(0 ^ { \circ } \leqslant x \leqslant 360 ^ { \circ }\). Label each graph clearly.
  2. Solve the equation \(\cos 2 x = 0.5\) for \(0 ^ { \circ } \leqslant x \leqslant 360 ^ { \circ }\).
OCR MEI C2 Q5
5 marks Moderate -0.8
5
  1. Sketch the graph of \(y = \cos x\) for \(0 ^ { \circ } \leqslant x \leqslant 360 ^ { \circ }\).
    On the same axes, sketch the graph of \(y = \cos 2 x\) for \(0 ^ { \circ } \leqslant x \leqslant 360 ^ { \circ }\). Label each graph clearly.
  2. Solve the equation \(\cos 2 x = 0.5\) for \(0 ^ { \circ } \leqslant x \leqslant 360 ^ { \circ }\).
OCR MEI C2 Q7
4 marks Moderate -0.8
7 Sketch the curve \(y = \sin x\) for \(0 ^ { \circ } \leqslant x \leqslant 360 ^ { \circ }\).
Solve the equation \(\sin x = - 0.68\) for \(0 ^ { \circ } \leqslant x \leqslant 360 ^ { \circ }\).
OCR MEI C2 Q8
5 marks Moderate -0.8
8
  1. Sketch the graph of \(y = \tan x\) for \(0 ^ { \circ } \leqslant x \leqslant 360 ^ { \circ }\).
  2. Solve the equation \(4 \sin x = 3 \cos x\) for \(0 ^ { \circ } \leqslant x \leqslant 360 ^ { \circ }\).
OCR MEI C2 Q9
4 marks Moderate -0.8
9 Sketch the graph of \(y = \sin x\) for \(0 ^ { \circ } \leqslant x \leqslant 360 ^ { \circ }\).
Solve the equation \(\sin x = - 0.2\) for \(0 ^ { \circ } \leqslant x \leqslant 360 ^ { \circ }\).
OCR MEI C2 Q10
5 marks Moderate -0.8
10
  1. Sketch the graph of \(y = \cos x\) for \(0 ^ { \circ } \leqslant x \leqslant 360 ^ { \circ }\).
    On the same axes, sketch the graph of \(y = \cos 2 x\) for \(0 ^ { \circ } \leqslant x \leqslant 360 ^ { \circ }\). Label each graph clearly.
  2. Solve the equation \(\cos 2 x = 0.5\) for \(0 ^ { \circ } \leqslant x \leqslant 360 ^ { \circ }\).
OCR MEI C2 Q12
5 marks Moderate -0.8
12
  1. Sketch the graph of \(y = \tan x\) for \(0 ^ { \circ } \leqslant x \leqslant 360 ^ { \circ }\).
  2. Solve the equation \(4 \sin x = 3 \cos x\) for \(0 ^ { \circ } \leqslant x \leqslant 360 ^ { \circ }\).
OCR C2 2011 June Q9
11 marks Moderate -0.8
9
  1. \includegraphics[max width=\textwidth, alt={}, center]{4d03f4e3-ae6c-4a0d-ae4d-d89258d2919a-4_362_979_1505_625} The diagram shows part of the curve \(y = \cos 2 x\), where \(x\) is in radians. The point \(A\) is the minimum point of this part of the curve.
    1. State the period of \(y = \cos 2 x\).
    2. State the coordinates of \(A\).
    3. Solve the inequality \(\cos 2 x \leqslant 0.5\) for \(0 \leqslant x \leqslant \pi\), giving your answers exactly.
  2. Solve the equation \(\cos 2 x = \sqrt { 3 } \sin 2 x\) for \(0 \leqslant x \leqslant \pi\), giving your answers exactly.
Edexcel AS Paper 1 2020 June Q9
8 marks Standard +0.3
9. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{bcbd842f-b2e2-4587-ab4c-15a57a449e5d-20_810_1214_255_427} \captionsetup{labelformat=empty} \caption{Figure 3}
\end{figure} Figure 3 shows part of the curve with equation \(y = 3 \cos x ^ { \circ }\).
The point \(P ( c , d )\) is a minimum point on the curve with \(c\) being the smallest negative value of \(x\) at which a minimum occurs.
  1. State the value of \(c\) and the value of \(d\).
  2. State the coordinates of the point to which \(P\) is mapped by the transformation which transforms the curve with equation \(y = 3 \cos x ^ { \circ }\) to the curve with equation
    1. \(y = 3 \cos \left( \frac { x ^ { \circ } } { 4 } \right)\)
    2. \(y = 3 \cos ( x - 36 ) ^ { \circ }\)
  3. Solve, for \(450 ^ { \circ } \leqslant \theta < 720 ^ { \circ }\), $$3 \cos \theta = 8 \tan \theta$$ giving your solution to one decimal place.
    In part (c) you must show all stages of your working.
    Solutions relying entirely on calculator technology are not acceptable.
AQA C2 2005 January Q7
11 marks Moderate -0.8
7 The diagram shows the graph of \(y = \cos 2 x\) for \(0 ^ { \circ } \leqslant x \leqslant 360 ^ { \circ }\). \includegraphics[max width=\textwidth, alt={}, center]{4a4d4dcd-4137-427d-834f-ac2fe83f8aeb-4_518_906_1098_552}
  1. Write down the coordinates of the points \(A , B\) and \(C\) marked on the diagram.
  2. Describe the single geometrical transformation by which the curve with equation \(y = \cos 2 x\) can be obtained from the curve with equation \(y = \cos x\).
  3. Solve the equation $$\cos 2 x = 0.37$$ giving all solutions to the nearest \(0.1 ^ { \circ }\) in the interval \(0 ^ { \circ } \leqslant x \leqslant 360 ^ { \circ }\). (No credit will be given for simply reading values from a graph.)
    (5 marks)
AQA C2 2009 January Q7
13 marks Moderate -0.8
7
  1. Solve the equation \(\sin x = 0.8\) in the interval \(0 \leqslant x \leqslant 2 \pi\), giving your answers in radians to three significant figures.
  2. The diagram shows the graph of the curve \(y = \sin x , 0 \leqslant x \leqslant 2 \pi\) and the lines \(y = k\) and \(y = - k\). \includegraphics[max width=\textwidth, alt={}, center]{0e19665b-5ee5-49e4-8de2-6c8dd17f61eb-5_497_780_552_689} The line \(y = k\) intersects the curve at the points \(P\) and \(Q\), and the line \(y = - k\) intersects the curve at the points \(R\) and \(S\). The point \(M\) is the minimum point of the curve.
    1. Write down the coordinates of the point \(M\).
    2. The \(x\)-coordinate of \(P\) is \(\alpha\). Write down the \(x\)-coordinate of the point \(Q\) in terms of \(\pi\) and \(\alpha\).
    3. Find the length of \(R S\) in terms of \(\pi\) and \(\alpha\), giving your answer in its simplest form.
  3. Sketch the graph of \(y = \sin 2 x\) for \(0 \leqslant x \leqslant 2 \pi\), indicating the coordinates of points where the graph intersects the \(x\)-axis and the coordinates of any maximum points.
Edexcel C2 Q6
9 marks Moderate -0.8
6. $$f ( x ) = \cos 2 x , \quad 0 \leq x \leq \pi .$$
  1. Sketch the curve \(y = \mathrm { f } ( x )\).
  2. Write down the coordinates of any points where the curve \(y = \mathrm { f } ( x )\) meets the coordinate axes.
  3. Solve the equation \(\mathrm { f } ( x ) = 0.5\), giving your answers in terms of \(\pi\).