General solution

Find the general solution (all solutions, not just in a given interval) of a trigonometric equation.

15 questions · Moderate -0.3

Sort by: Default | Easiest first | Hardest first
AQA FP1 2006 January Q3
5 marks Moderate -0.8
3 Find the general solution, in degrees, for the equation $$\sin \left( 4 x + 10 ^ { \circ } \right) = \sin 50 ^ { \circ }$$
AQA FP1 2009 January Q3
5 marks Moderate -0.5
3 Find the general solution of the equation $$\tan \left( \frac { \pi } { 2 } - 3 x \right) = \sqrt { 3 }$$
AQA FP1 2011 January Q4
6 marks Standard +0.3
4 Find the general solution of the equation $$\sin \left( 4 x - \frac { 2 \pi } { 3 } \right) = - \frac { 1 } { 2 }$$ giving your answer in terms of \(\pi\).
(6 marks)
AQA FP1 2012 January Q6
7 marks Standard +0.3
6 Find the general solution of each of the following equations:
  1. \(\quad \tan \left( \frac { x } { 2 } - \frac { \pi } { 4 } \right) = \frac { 1 } { \sqrt { 3 } }\);
  2. \(\quad \tan ^ { 2 } \left( \frac { x } { 2 } - \frac { \pi } { 4 } \right) = \frac { 1 } { 3 }\).
AQA FP1 2007 June Q6
6 marks Moderate -0.3
6 Find the general solution of the equation $$\sin \left( 2 x - \frac { \pi } { 2 } \right) = \frac { \sqrt { 3 } } { 2 }$$ giving your answer in terms of \(\pi\).
AQA FP1 2008 June Q5
7 marks Moderate -0.3
5
  1. Find, in radians, the general solution of the equation $$\cos \left( \frac { x } { 2 } + \frac { \pi } { 3 } \right) = \frac { 1 } { \sqrt { 2 } }$$ giving your answer in terms of \(\pi\).
  2. Hence find the smallest positive value of \(x\) which satisfies this equation.
AQA FP1 2009 June Q5
9 marks Standard +0.3
5
  1. Find the general solution of the equation $$\cos ( 3 x - \pi ) = \frac { 1 } { 2 }$$ giving your answer in terms of \(\pi\).
  2. From your general solution, find all the solutions of the equation which lie between \(10 \pi\) and \(11 \pi\).
AQA FP1 2011 June Q5
7 marks Moderate -0.3
5
  1. Find the general solution of the equation $$\cos \left( 3 x - \frac { \pi } { 6 } \right) = \frac { \sqrt { 3 } } { 2 }$$ giving your answer in terms of \(\pi\).
  2. Use your general solution to find the smallest solution of this equation which is greater than \(5 \pi\).
AQA FP1 2012 June Q4
6 marks Moderate -0.3
4 Find the general solution, in degrees, of the equation $$\sin \left( 70 ^ { \circ } - \frac { 2 } { 3 } x \right) = \cos 20 ^ { \circ }$$
AQA FP1 2013 June Q3
8 marks Standard +0.3
3
  1. Find the general solution, in degrees, of the equation $$\cos \left( 5 x + 40 ^ { \circ } \right) = \cos 65 ^ { \circ }$$
  2. Given that $$\sin \frac { \pi } { 12 } = \frac { \sqrt { 3 } - 1 } { 2 \sqrt { 2 } }$$ express \(\sin \frac { \pi } { 12 }\) in the form \(\left( \cos \frac { \pi } { 4 } \right) ( \cos ( a \pi ) + \cos ( b \pi ) )\), where \(a\) and \(b\) are rational.
    (3 marks)
AQA FP1 2015 June Q4
6 marks Moderate -0.3
4
  1. Find the general solution, in degrees, of the equation $$2 \sin \left( 3 x + 45 ^ { \circ } \right) = 1$$
  2. Use your general solution to find the solution of \(2 \sin \left( 3 x + 45 ^ { \circ } \right) = 1\) that is closest to \(200 ^ { \circ }\).
    [0pt] [1 mark]
AQA FP1 2008 January Q3
5 marks Moderate -0.8
3 Find the general solution of the equation $$\tan 4 \left( x - \frac { \pi } { 8 } \right) = 1$$ giving your answer in terms of \(\pi\).
AQA FP1 2010 January Q3
4 marks Easy -1.2
3 Find the general solution of the equation $$\sin \left( 4 x + \frac { \pi } { 4 } \right) = 1$$
AQA FP1 2005 June Q5
7 marks Moderate -0.3
5 Find the general solutions of the following equations, giving your answers in terms of \(\pi\) :
  1. \(\quad \tan 3 x = \sqrt { 3 }\);
  2. \(\quad \tan \left( 3 x - \frac { \pi } { 3 } \right) = - \sqrt { 3 }\).
AQA FP1 2006 June Q4
5 marks Moderate -0.5
4 Find, in radians, the general solution of the equation $$\cos 3 x = \frac { \sqrt { 3 } } { 2 }$$ giving your answers in terms of \(\pi\).