Function properties and inverses

Questions about range, domain, sketching, and finding inverse functions of trigonometric functions.

24 questions · Moderate -0.7

Sort by: Default | Easiest first | Hardest first
CAIE P1 2010 June Q5
7 marks Moderate -0.3
5 The function f is such that \(\mathrm { f } ( x ) = 2 \sin ^ { 2 } x - 3 \cos ^ { 2 } x\) for \(0 \leqslant x \leqslant \pi\).
  1. Express \(\mathrm { f } ( x )\) in the form \(a + b \cos ^ { 2 } x\), stating the values of \(a\) and \(b\).
  2. State the greatest and least values of \(\mathrm { f } ( x )\).
  3. Solve the equation \(\mathrm { f } ( x ) + 1 = 0\).
CAIE P1 2010 June Q11
10 marks Standard +0.3
11 The function f : \(x \mapsto 4 - 3 \sin x\) is defined for the domain \(0 \leqslant x \leqslant 2 \pi\).
  1. Solve the equation \(\mathrm { f } ( x ) = 2\).
  2. Sketch the graph of \(y = \mathrm { f } ( x )\).
  3. Find the set of values of \(k\) for which the equation \(\mathrm { f } ( x ) = k\) has no solution. The function \(\mathrm { g } : x \mapsto 4 - 3 \sin x\) is defined for the domain \(\frac { 1 } { 2 } \pi \leqslant x \leqslant A\).
  4. State the largest value of \(A\) for which g has an inverse.
  5. For this value of \(A\), find the value of \(\mathrm { g } ^ { - 1 } ( 3 )\). \footnotetext{Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge. }
CAIE P1 2015 June Q1
4 marks Easy -1.2
1 Given that \(\theta\) is an obtuse angle measured in radians and that \(\sin \theta = k\), find, in terms of \(k\), an expression for
  1. \(\cos \theta\),
  2. \(\tan \theta\),
  3. \(\sin ( \theta + \pi )\).
CAIE P1 2015 June Q8
9 marks Moderate -0.3
8 The function f : \(x \mapsto 5 + 3 \cos \left( \frac { 1 } { 2 } x \right)\) is defined for \(0 \leqslant x \leqslant 2 \pi\).
  1. Solve the equation \(\mathrm { f } ( x ) = 7\), giving your answer correct to 2 decimal places.
  2. Sketch the graph of \(y = \mathrm { f } ( x )\).
  3. Explain why f has an inverse.
  4. Obtain an expression for \(\mathrm { f } ^ { - 1 } ( x )\).
CAIE P1 2017 June Q10
11 marks Standard +0.2
10 The function f is defined by \(\mathrm { f } ( x ) = 3 \tan \left( \frac { 1 } { 2 } x \right) - 2\), for \(- \frac { 1 } { 2 } \pi \leqslant x \leqslant \frac { 1 } { 2 } \pi\).
  1. Solve the equation \(\mathrm { f } ( x ) + 4 = 0\), giving your answer correct to 1 decimal place.
  2. Find an expression for \(\mathrm { f } ^ { - 1 } ( x )\) and find the domain of \(\mathrm { f } ^ { - 1 }\).
  3. Sketch, on the same diagram, the graphs of \(y = \mathrm { f } ( x )\) and \(y = \mathrm { f } ^ { - 1 } ( x )\).
CAIE P1 2008 November Q5
8 marks Moderate -0.8
5 The function f is such that \(\mathrm { f } ( x ) = a - b \cos x\) for \(0 ^ { \circ } \leqslant x \leqslant 360 ^ { \circ }\), where \(a\) and \(b\) are positive constants. The maximum value of \(\mathrm { f } ( x )\) is 10 and the minimum value is - 2 .
  1. Find the values of \(a\) and \(b\).
  2. Solve the equation \(\mathrm { f } ( x ) = 0\).
  3. Sketch the graph of \(y = \mathrm { f } ( x )\).
CAIE P1 2013 November Q1
3 marks Easy -1.2
1 Given that \(\cos x = p\), where \(x\) is an acute angle in degrees, find, in terms of \(p\),
  1. \(\sin x\),
  2. \(\tan x\),
  3. \(\tan \left( 90 ^ { \circ } - x \right)\).
CAIE P1 2016 November Q10
11 marks Standard +0.3
10 A function f is defined by \(\mathrm { f } : x \mapsto 5 - 2 \sin 2 x\) for \(0 \leqslant x \leqslant \pi\).
  1. Find the range of f .
  2. Sketch the graph of \(y = \mathrm { f } ( x )\).
  3. Solve the equation \(\mathrm { f } ( x ) = 6\), giving answers in terms of \(\pi\). The function g is defined by \(\mathrm { g } : x \mapsto 5 - 2 \sin 2 x\) for \(0 \leqslant x \leqslant k\), where \(k\) is a constant.
  4. State the largest value of \(k\) for which g has an inverse.
  5. For this value of \(k\), find an expression for \(\mathrm { g } ^ { - 1 } ( x )\).
CAIE P1 2018 November Q4
6 marks Moderate -0.3
4 Functions f and g are defined by $$\begin{aligned} & \mathrm { f } : x \mapsto 2 - 3 \cos x \quad \text { for } 0 \leqslant x \leqslant 2 \pi \\ & \mathrm {~g} : x \mapsto \frac { 1 } { 2 } x \quad \text { for } 0 \leqslant x \leqslant 2 \pi \end{aligned}$$
  1. Solve the equation \(\operatorname { fg } ( x ) = 1\).
  2. Sketch the graph of \(y = \mathrm { f } ( x )\).
OCR MEI C2 2008 January Q3
3 marks Moderate -0.8
3 You are given that \(\tan \theta = \frac { 1 } { 2 }\) and the angle \(\theta\) is acute. Show, without using a calculator, that \(\cos ^ { 2 } \theta = \frac { 4 } { 5 }\).
OCR MEI C2 2005 June Q3
3 marks Moderate -0.8
3 Given that \(\sin \theta = \frac { \sqrt { 3 } } { 4 }\), find in surd form the possible values of \(\cos \theta\).
OCR C2 Q6
8 marks Moderate -0.3
  1. \(f ( x ) = \cos 2 x , 0 \leq x \leq \pi\).
    1. Sketch the curve \(y = \mathrm { f } ( x )\).
    2. Write down the coordinates of any points where the curve \(y = \mathrm { f } ( x )\) meets the coordinate axes.
    3. Solve the equation \(\mathrm { f } ( x ) = 0.5\), giving your answers in terms of \(\pi\).
    4. (i) Find
    $$\int \left( x + 5 + \frac { 3 } { \sqrt { x } } \right) \mathrm { d } x$$
  2. Evaluate $$\int _ { - 2 } ^ { 0 } ( 3 x - 1 ) ^ { 2 } d x$$
OCR C2 Q4
7 marks Moderate -0.3
4. $$\mathrm { f } ( x ) = \frac { 4 } { 2 + \sin x ^ { \circ } }$$
  1. State the maximum value of \(\mathrm { f } ( x )\) and the smallest positive value of \(x\) for which \(\mathrm { f } ( x )\) takes this value.
  2. Solve the equation \(\mathrm { f } ( x ) = 3\) for \(0 \leq x \leq 360\), giving your answers to 1 decimal place.
OCR MEI C2 Q4
2 marks Moderate -0.8
4 The \(n\)th term, \(t _ { n }\), of a sequence is given by $$t _ { n } = \sin ( \theta + 180 n ) ^ { \circ }$$ Express \(t _ { 1 }\) and \(t _ { 2 }\) in terms of \(\sin \theta ^ { \circ }\).
OCR MEI C2 Q3
3 marks Moderate -0.8
3 Simplify \(\frac { \sqrt { 1 - \cos ^ { 2 } \theta } } { \tan \theta }\), where \(\theta\) is an acute angle.
[0pt] [3]
OCR MEI C2 Q1
3 marks Moderate -0.8
1 Given that \(\sin \theta = \frac { \sqrt { 3 } } { 4 }\), find in surd form the possible values of \(\cos \theta\).
OCR MEI C2 2011 June Q10
2 marks Easy -1.2
10 The \(n\)th term, \(t _ { n }\), of a sequence is given by $$t _ { n } = \sin ( \theta + 180 n ) ^ { \circ } .$$ Express \(t _ { 1 }\) and \(t _ { 2 }\) in terms of \(\sin \theta ^ { \circ }\).
OCR MEI C2 2014 June Q8
3 marks Easy -1.2
8 Simplify \(\frac { \sqrt { 1 - \cos ^ { 2 } \theta } } { \tan \theta }\), where \(\theta\) is an acute angle.
Edexcel C2 Q7
9 marks Moderate -0.3
7
7
\end{tabular} &
\hline &
\hline \multicolumn{2}{|c|}{}
\hline \multicolumn{2}{|c|}{}
\hline & \multirow{2}{*}{}
\hline \multicolumn{2}{|c|}{}
\hline \multicolumn{2}{|c|}{}
\hline \multicolumn{2}{|c|}{}
\hline &
\hline &
\hline &
\hline &
\hline &
\hline &
\hline Total &
\hline \end{tabular} \end{center} 1. $$f ( x ) = p x ^ { 3 } + 6 x ^ { 2 } + 12 x + q .$$ Given that the remainder when \(\mathrm { f } ( x )\) is divided by ( \(x - 1\) ) is equal to the remainder when \(\mathrm { f } ( x )\) is divided by ( \(2 x + 1\) ),
  1. find the value of \(p\). Given also that \(q = 3\), and \(p\) has the value found in part (a),
  2. find the value of the remainder.
    2. \begin{figure}[h]
    \captionsetup{labelformat=empty} \caption{Figure 1} \includegraphics[alt={},max width=\textwidth]{f01026a9-e5fe-4c19-b096-2bb4ad22c389-2_615_833_941_598}
    \end{figure} The circle \(C\), with centre \(( a , b )\) and radius 5 , touches the \(x\)-axis at \(( 4,0 )\), as shown in Fig. 1.
  3. Write down the value of \(a\) and the value of \(b\).
  4. Find a cartesian equation of \(C\). A tangent to the circle, drawn from the point \(P ( 8,17 )\), touches the circle at \(T\).
  5. Find, to 3 significant figures, the length of \(P T\).
    3. (a) Expand \(( 2 \sqrt { } x + 3 ) ^ { 2 }\).
  6. Hence evaluate \(\int _ { 1 } ^ { 2 } ( 2 \sqrt { } x + 3 ) ^ { 2 } \mathrm {~d} x\), giving your answer in the form \(a + b \sqrt { } 2\), where \(a\) and \(b\) are integers.
    4. The first three terms in the expansion, in ascending powers of \(x\), of \(( 1 + p x ) ^ { n }\), are \(1 - 18 x + 36 p ^ { 2 } x ^ { 2 }\). Given that \(n\) is a positive integer, find the value of \(n\) and the value of \(p\).
    (7 marks)
    5. Find all values of \(\theta\) in the interval \(0 \leq \theta < 360\) for which
  7. \(\cos ( \theta + 75 ) ^ { \circ } = 0\).
  8. \(\sin 2 \theta ^ { \circ } = 0.7\), giving your answers to one decima1 place.
    6. Given that \(\log _ { 2 } x = a\), find, in terms of \(a\), the simplest form of
  9. \(\log _ { 2 } ( 16 x )\),
  10. \(\log _ { 2 } \left( \frac { x ^ { 4 } } { 2 } \right)\).
  11. Hence, or otherwise, solve $$\log _ { 2 } ( 16 x ) - \log _ { 2 } \left( \frac { x ^ { 4 } } { 2 } \right) = \frac { 1 } { 2 }$$ giving your answer in its simplest surd form.
    7. The curve \(C\) has equation \(y = \cos \left( x + \frac { \pi } { 4 } \right) , 0 \leq x \leq 2 \pi\).
  12. Sketch \(C\).
  13. Write down the exact coordinates of the points at which \(C\) meets the coordinate axes.
  14. Solve, for \(x\) in the interval \(0 \leq x \leq 2 \pi\), $$\cos \left( x + \frac { \pi } { 4 } \right) = 0.5$$ giving your answers in terms of \(\pi\).
OCR MEI AS Paper 2 2021 November Q3
3 marks Moderate -0.8
3 In this question you must show detailed reasoning. You are given that \(\tan 30 ^ { \circ } = \frac { 1 } { \sqrt { 3 } }\).
Explain why \(\tan 690 ^ { \circ } = - \frac { 1 } { \sqrt { 3 } }\).
AQA AS Paper 1 2018 June Q3
2 marks Easy -1.2
3 State the interval for which \(\sin x\) is a decreasing function for \(0 ^ { \circ } \leq x \leq 360 ^ { \circ }\) [0pt] [2 marks]
AQA AS Paper 1 2024 June Q1
1 marks Easy -1.8
1 It is given that \(\tan \theta ^ { \circ } = k\), where \(k\) is a constant.
Find \(\tan ( \theta + 180 ) ^ { \circ }\) Circle your answer. \(- k\) \(- \frac { 1 } { k }\) \(\frac { 1 } { k }\) \(k\)
AQA AS Paper 2 2023 June Q2
1 marks Easy -1.3
2 It is given that \(\sin \theta = \frac { 4 } { 5 }\) and \(90 ^ { \circ } < \theta < 180 ^ { \circ }\) Find the value of \(\cos \theta\) Circle your answer.
[0pt] [1 mark] \(- \frac { 3 } { 4 }\) \(- \frac { 3 } { 5 }\) \(\frac { 3 } { 5 }\) \(\frac { 3 } { 4 }\)
AQA Paper 2 2020 June Q2
1 marks Easy -2.0
2 Which one of the following equations has no real solutions?
Tick ( \(\checkmark\) ) one box.
[0pt] [1 mark] $$\begin{aligned} & \cot x = 0 \\ & \ln x = 0 \\ & | x + 1 | = 0 \\ & \sec x = 0 \end{aligned}$$ □