7
7
\end{tabular} &
\hline
&
\hline
\multicolumn{2}{|c|}{}
\hline
\multicolumn{2}{|c|}{}
\hline
& \multirow{2}{*}{}
\hline
\multicolumn{2}{|c|}{}
\hline
\multicolumn{2}{|c|}{}
\hline
\multicolumn{2}{|c|}{}
\hline
&
\hline
&
\hline
&
\hline
&
\hline
&
\hline
&
\hline
Total &
\hline
\end{tabular}
\end{center}
1.
$$f ( x ) = p x ^ { 3 } + 6 x ^ { 2 } + 12 x + q .$$
Given that the remainder when \(\mathrm { f } ( x )\) is divided by ( \(x - 1\) ) is equal to the remainder when \(\mathrm { f } ( x )\) is divided by ( \(2 x + 1\) ),
- find the value of \(p\).
Given also that \(q = 3\), and \(p\) has the value found in part (a),
- find the value of the remainder.
2.
\begin{figure}[h]
\captionsetup{labelformat=empty}
\caption{Figure 1}
\includegraphics[alt={},max width=\textwidth]{f01026a9-e5fe-4c19-b096-2bb4ad22c389-2_615_833_941_598}
\end{figure}
The circle \(C\), with centre \(( a , b )\) and radius 5 , touches the \(x\)-axis at \(( 4,0 )\), as shown in Fig. 1. - Write down the value of \(a\) and the value of \(b\).
- Find a cartesian equation of \(C\).
A tangent to the circle, drawn from the point \(P ( 8,17 )\), touches the circle at \(T\).
- Find, to 3 significant figures, the length of \(P T\).
3. (a) Expand \(( 2 \sqrt { } x + 3 ) ^ { 2 }\). - Hence evaluate \(\int _ { 1 } ^ { 2 } ( 2 \sqrt { } x + 3 ) ^ { 2 } \mathrm {~d} x\), giving your answer in the form \(a + b \sqrt { } 2\), where \(a\) and \(b\) are integers.
4. The first three terms in the expansion, in ascending powers of \(x\), of \(( 1 + p x ) ^ { n }\), are \(1 - 18 x + 36 p ^ { 2 } x ^ { 2 }\). Given that \(n\) is a positive integer, find the value of \(n\) and the value of \(p\).
(7 marks)
5. Find all values of \(\theta\) in the interval \(0 \leq \theta < 360\) for which - \(\cos ( \theta + 75 ) ^ { \circ } = 0\).
- \(\sin 2 \theta ^ { \circ } = 0.7\), giving your answers to one decima1 place.
6. Given that \(\log _ { 2 } x = a\), find, in terms of \(a\), the simplest form of - \(\log _ { 2 } ( 16 x )\),
- \(\log _ { 2 } \left( \frac { x ^ { 4 } } { 2 } \right)\).
- Hence, or otherwise, solve
$$\log _ { 2 } ( 16 x ) - \log _ { 2 } \left( \frac { x ^ { 4 } } { 2 } \right) = \frac { 1 } { 2 }$$
giving your answer in its simplest surd form.
7. The curve \(C\) has equation \(y = \cos \left( x + \frac { \pi } { 4 } \right) , 0 \leq x \leq 2 \pi\). - Sketch \(C\).
- Write down the exact coordinates of the points at which \(C\) meets the coordinate axes.
- Solve, for \(x\) in the interval \(0 \leq x \leq 2 \pi\),
$$\cos \left( x + \frac { \pi } { 4 } \right) = 0.5$$
giving your answers in terms of \(\pi\).