Volume with exponential or logarithmic functions

A question is this type if and only if the curve equation involves exponential (e^x) or logarithmic (ln x) functions and the volume of revolution is required.

24 questions · Standard +0.4

Sort by: Default | Easiest first | Hardest first
Edexcel C4 2017 June Q5
7 marks Standard +0.3
5. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{cd958ff3-ed4e-4bd7-aa4b-339da6d618a6-16_589_540_248_705} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} Diagram not drawn to scale The finite region \(S\), shown shaded in Figure 2, is bounded by the \(y\)-axis, the \(x\)-axis, the line with equation \(x = \ln 4\) and the curve with equation $$y = \mathrm { e } ^ { x } + 2 \mathrm { e } ^ { - x } , \quad x \geqslant 0$$ The region \(S\) is rotated through \(2 \pi\) radians about the \(x\)-axis.
Use integration to find the exact value of the volume of the solid generated. Give your answer in its simplest form.
[0pt] [Solutions based entirely on graphical or numerical methods are not acceptable.]
Edexcel P4 2020 October Q3
6 marks Standard +0.3
3. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{79ac81c3-cd05-4f28-8840-3c8a6960e7b7-08_801_679_125_635} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a sketch of part of the curve with equation \(y = \mathrm { e } ^ { 0.5 x } - 2\) The region \(R\), shown shaded in Figure 1, is bounded by the curve, the \(x\)-axis and the \(y\)-axis. The region \(R\) is rotated \(360 ^ { \circ }\) about the \(x\)-axis to form a solid of revolution.
Show that the volume of this solid can be written in the form \(a \ln 2 + b\), where \(a\) and \(b\) are constants to be found.
OCR C3 Q2
6 marks Standard +0.3
2.
\includegraphics[max width=\textwidth, alt={}]{49d985bf-7c94-4a54-88c1-c0084cd94000-1_563_833_532_513}
The diagram shows the curve with equation \(y = \frac { 3 x + 1 } { \sqrt { x } } , x > 0\).
The shaded region is bounded by the curve, the \(x\)-axis and the lines \(x = 1\) and \(x = 3\).
Find the volume of the solid formed when the shaded region is rotated through four right angles about the \(x\)-axis, giving your answer in the form \(\pi ( a + \ln b )\), where \(a\) and \(b\) are integers.
OCR MEI C4 Q4
5 marks Standard +0.3
4 Fig. 4 shows a sketch of the region enclosed by the curve \(\sqrt { 1 + \mathrm { e } ^ { - 2 x } }\), the \(x\)-axis, the \(y\)-axis and the line \(x = 1\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{88eadcf5-4335-4016-baf5-d3f74513bbb8-02_517_755_1576_649} \captionsetup{labelformat=empty} \caption{Fig. 4}
\end{figure} Find the volume of the solid generated when this region is rotated through \(360 ^ { \circ }\) about the \(x\)-axis. Give your answer in an exact form.
OCR C4 Q5
7 marks Standard +0.8
5. \includegraphics[max width=\textwidth, alt={}, center]{825f6c7d-5399-4e7f-bacd-b7c0831aab06-1_408_858_1893_488} The diagram shows the curve with equation \(y = 4 x ^ { \frac { 1 } { 2 } } \mathrm { e } ^ { - x }\).
The shaded region bounded by the curve, the \(x\)-axis and the line \(x = 2\) is rotated through four right angles about the \(x\)-axis. Find, in terms of \(\pi\) and e, the exact volume of the solid formed.
OCR MEI C4 Q3
9 marks Standard +0.3
3 Fig. 4 shows the curve \(y = \sqrt { 1 + \mathrm { e } ^ { 2 x } }\), and the region between the curve, the \(x\)-axis, the \(y\)-axis and the line \(x = 2\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{ce44db53-2ec8-497b-a1d5-a8adf85e3929-3_656_736_482_665} \captionsetup{labelformat=empty} \caption{Fig. 4}
\end{figure}
  1. Find the exact volume of revolution when the shaded region is rotated through \(360 ^ { \circ }\) about the \(x\)-axis.
    1. Complete the table of values, and use the trapezium rule with 4 strips to estimate the area of the shaded region.
      \(x\)00.511.52
      \(y\)1.92832.89644.5919
    2. The trapezium rule for \(\int _ { 0 } ^ { 2 } \sqrt { 1 + \mathrm { e } ^ { 2 x } } \mathrm {~d} x\) with 8 and 16 strips gives 6.797 and 6.823, although not necessarily in that order. Without doing the calculations, say which result is which, explaining your reasoning.
OCR MEI C4 Q5
4 marks Standard +0.3
5 Fig. 2 shows the curve \(y = \sqrt { } 1 + \mathrm { e } ^ { 2 x }\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{8d786d33-c5c2-44a6-8273-7a3e43e552ef-4_434_873_306_665} \captionsetup{labelformat=empty} \caption{Fig. 2}
\end{figure} The region bounded by the curve, the \(x\)-axis, the \(y\)-axis and the line \(x = 1\) is rotated through \(360 ^ { \circ }\) about the \(x\)-axis. Show that the volume of the solid of revolution produced is \(\frac { 1 } { 2 } \pi \left( 1 + \mathrm { e } ^ { 2 } \right)\).
OCR MEI C4 Q8
5 marks Standard +0.3
8 Fig. 4 shows a sketch of the region enclosed by the curve . \(\mathrm { J } 1 + \mathrm { e } - 2 \mathrm { x }\), the x -axis, the y -axis and the line \(\boldsymbol { x } = 1\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{8d786d33-c5c2-44a6-8273-7a3e43e552ef-6_442_628_314_745} \captionsetup{labelformat=empty} \caption{Fig. 4}
\end{figure} Find the volume of the solid generated when this region is rotated through \(360 ^ { \circ }\) about the \(\boldsymbol { x }\)-axis. Give your answer in an exact form.
OCR MEI C4 Q5
8 marks Standard +0.3
5 Fig. 4 shows the curve \(y = \sqrt { 1 + \mathrm { e } ^ { 2 x } }\), and the region between the curve, the \(x\)-axis, the \(y\)-axis and the line \(x = 2\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{252453c9-9afa-435c-b64b-5ea37ec69eed-5_657_732_375_667} \captionsetup{labelformat=empty} \caption{Fig. 4}
\end{figure}
  1. Find the exact volume of revolution when the shaded region is rotated through \(360 ^ { \circ }\) about the \(x\)-axis.
    1. Complete the table of values, and use the trapezium rule with 4 strips to estimate the area of the shaded region.
      \(x\)00.511.52
      \(y\)1.92832.89644.5919
    2. The trapezium rule for \(\int _ { 0 } ^ { 2 } \sqrt { 1 + \mathrm { e } ^ { 2 x } } \mathrm {~d} x\) with 8 and 16 strips gives 6.797 and 6.823, although not necessarily in that order. Without doing the calculations, say which result is which, explaining your reasoning.
OCR C4 2011 June Q9
13 marks Standard +0.3
9
  1. Show that \(\frac { \mathrm { d } } { \mathrm { d } x } ( x \ln x - x ) = \ln x\).
  2. \includegraphics[max width=\textwidth, alt={}, center]{8492b214-aaac-4354-8649-e317bf7b3535-3_481_725_1064_751} In the diagram, \(C\) is the curve \(y = \ln x\). The region \(R\) is bounded by \(C\), the \(x\)-axis and the line \(x = \mathrm { e }\).
    (a) Find the exact volume of the solid of revolution formed by rotating \(R\) completely about the \(x\)-axis.
    (b) The region \(R\) is rotated completely about the \(y\)-axis. Explain why the volume of the solid of revolution formed is given by $$\pi \mathrm { e } ^ { 2 } - \pi \int _ { 0 } ^ { 1 } \mathrm { e } ^ { 2 y } \mathrm {~d} y ,$$ and find this volume.
OCR MEI C4 2013 January Q4
8 marks Standard +0.3
4 Fig. 4 shows the curve \(y = \sqrt { 1 + \mathrm { e } ^ { 2 x } }\), and the region between the curve, the \(x\)-axis, the \(y\)-axis and the line \(x = 2\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{9bceee25-35bd-448b-a4a2-1a5667be5f11-02_650_727_1176_653} \captionsetup{labelformat=empty} \caption{Fig. 4}
\end{figure}
  1. Find the exact volume of revolution when the shaded region is rotated through \(360 ^ { \circ }\) about the \(x\)-axis.
    1. Complete the table of values, and use the trapezium rule with 4 strips to estimate the area of the shaded region.
      \(x\)00.511.52
      \(y\)1.92832.89644.5919
    2. The trapezium rule for \(\int _ { 0 } ^ { 2 } \sqrt { 1 + \mathrm { e } ^ { 2 x } } \mathrm {~d} x\) with 8 and 16 strips gives 6.797 and 6.823, although not necessarily in that order. Without doing the calculations, say which result is which, explaining your reasoning.
OCR MEI C4 2005 June Q4
5 marks Standard +0.3
4 Fig. 4 shows a sketch of the region enclosed by the curve \(\sqrt { 1 + \mathrm { e } ^ { - 2 x } }\), the \(x\)-axis, the \(y\)-axis and the line \(x = 1\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{7a1123f8-53cd-4b24-bec6-8c3bccc22653-3_517_755_1576_649} \captionsetup{labelformat=empty} \caption{Fig. 4}
\end{figure} Find the volume of the solid generated when this region is rotated through \(360 ^ { \circ }\) about the \(x\)-axis. Give your answer in an exact form.
AQA C3 2011 January Q8
16 marks Standard +0.3
8
  1. Given that \(\mathrm { e } ^ { - 2 x } = 4\), find the exact value of \(x\).
  2. The diagram shows the curve \(y = 4 \mathrm { e } ^ { - 2 x } - \mathrm { e } ^ { - 4 x }\). \includegraphics[max width=\textwidth, alt={}, center]{6761e676-48ae-47e9-9617-153342cdf5c4-9_490_1185_463_440} The curve crosses the \(y\)-axis at the point \(A\), the \(x\)-axis at the point \(B\), and has a stationary point at \(M\).
    1. State the \(y\)-coordinate of \(A\).
    2. Find the \(x\)-coordinate of \(B\), giving your answer in an exact form.
    3. Find the \(x\)-coordinate of the stationary point, \(M\), giving your answer in an exact form.
    4. The shaded region \(R\) is bounded by the curve \(y = 4 \mathrm { e } ^ { - 2 x } - \mathrm { e } ^ { - 4 x }\), the lines \(x = 0\) and \(x = \ln 2\) and the \(x\)-axis. Find the volume of the solid generated when the region \(R\) is rotated through \(360 ^ { \circ }\) about the \(x\)-axis, giving your answer in the form \(\frac { p } { q } \pi\), where \(p\) and \(q\) are integers.
      (7 marks)
Edexcel C4 Q1
6 marks Standard +0.3
1. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{80bef9d4-b84c-4d3a-a093-67a466c6d1b9-02_615_791_146_532} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows the curve with equation \(y = \frac { 3 x + 1 } { \sqrt { x } } , x > 0\).
The shaded region is bounded by the curve, the \(x\)-axis and the lines \(x = 1\) and \(x = 3\).
Find the volume of the solid formed when the shaded region is rotated through \(2 \pi\) radians about the \(x\)-axis, giving your answer in the form \(\pi ( a + \ln b )\), where \(a\) and \(b\) are integers.

WJEC Further Unit 4 2023 June Q8
11 marks Challenging +1.2
8. The function \(f\) is defined by $$f ( x ) = \frac { 1 } { \sqrt { x ^ { 2 } + 4 x + 3 } }$$
  1. Find the mean value of the function \(f\) for \(0 \leqslant x \leqslant 2\), giving your answer correct to three decimal places.
  2. The region \(R\) is bounded by the curve \(y = f ( x )\), the \(x\)-axis and the lines \(x = 0\) and \(x = 2\). Find the exact value of the volume of the solid generated when \(R\) is rotated through four right angles about the \(x\)-axis.
WJEC Further Unit 4 2024 June Q7
12 marks Standard +0.8
7. (a) A curve \(C\) is defined by the equation \(y = \frac { 1 } { \sqrt { 16 - 6 x - x ^ { 2 } } }\) for \(- 3 \leqslant x \leqslant 1\).
  1. Find the mean value of \(y = \frac { 1 } { \sqrt { 16 - 6 x - x ^ { 2 } } }\) between \(x = - 3\) and \(x = 1\).
  2. The region \(R\) is bounded by the curve \(C\), the \(x\)-axis and the lines \(x = - 3\) and \(x = 1\). Find the volume of the solid generated when \(R\) is rotated through four right-angles about the \(x\)-axis.
    (b) Evaluate the improper integral $$\int _ { 1 } ^ { \infty } \frac { - 8 \mathrm { e } ^ { - 2 x } } { 4 \mathrm { e } ^ { - 2 x } - 5 } \mathrm {~d} x$$ giving your answer correct to three decimal places.
    \section*{PLEASE DO NOT WRITE ON THIS PAGE}
OCR Further Pure Core 1 2022 June Q1
6 marks Standard +0.8
1 In this question you must show detailed reasoning.
  1. Show that \(\cosh ( 2 \ln 3 ) = \frac { 41 } { 9 }\). The region \(R\) is bounded by the curve with equation \(\mathrm { y } = \sqrt { \operatorname { sinhx } }\), the \(x\)-axis and the line with equation \(x = 2 \ln 3\) (see diagram). The units of the axes are centimetres. \includegraphics[max width=\textwidth, alt={}, center]{23e58e5e-bbaa-4932-aad0-89b3de6647b2-2_652_668_740_242} A manufacturer produces bell-shaped chocolate pieces. Each piece is modelled as being the shape of the solid formed by rotating \(R\) completely about the \(x\)-axis.
  2. Determine, according to the model, the exact volume of one chocolate piece.
OCR Further Pure Core 2 2023 June Q4
4 marks Challenging +1.2
4 In this question you must show detailed reasoning. The region \(R\) is bounded by the curve with equation \(\mathrm { y } = \frac { 1 } { \sqrt { 3 \mathrm { x } ^ { 2 } - 3 \mathrm { x } + 1 } }\), the \(x\)-axis and the lines with equations \(x = \frac { 1 } { 2 }\) and \(x = 1\) (see diagram). The units of the axes are cm . \includegraphics[max width=\textwidth, alt={}, center]{7b2bfb4e-524f-4d1c-ae98-075c7fb404f9-3_778_1241_497_242} A pendant is to be made out of a precious metal. The shape of the pendant is modelled as the shape formed when \(R\) is rotated by \(2 \pi\) radians about the \(x\)-axis. Find the exact value of the volume of precious metal required to make the pendant, according to the model.
OCR Further Pure Core 2 2018 December Q8
7 marks
8 \includegraphics[max width=\textwidth, alt={}, center]{e792797e-6d20-4fc3-9733-43db10f764d7-4_677_1182_587_440} The figure shows part of the graph of \(y = ( x - 3 ) \sqrt { \ln x }\). The portion of the graph below the \(x\)-axis is rotated by \(2 \pi\) radians around the \(x\)-axis to form a solid of revolution, \(S\). Determine the exact volume of \(S\).
OCR Further Pure Core 2 2017 Specimen Q2
4 marks Standard +0.3
2 In this question you must show detailed reasoning. The finite region \(R\) is enclosed by the curve with equation \(y = \frac { 8 } { \sqrt { 16 + x ^ { 2 } } }\), the \(x\)-axis and the lines \(x = 0\) and \(x = 4\). Region \(R\) is rotated through \(360 ^ { \circ }\) about the \(x\)-axis. Find the exact value of the volume generated. [4]
Edexcel C4 Q10
8 marks Standard +0.3
10. \begin{figure}[h]
\captionsetup{labelformat=empty} \caption{Figure 1} \includegraphics[alt={},max width=\textwidth]{615ec68b-3a32-4309-bb54-acf39ed09f96-07_624_828_335_584}
\end{figure} In Fig. 1, the curve \(C\) has equation \(y = \mathrm { f } ( x )\), where $$\mathrm { f } ( x ) = x + \frac { 2 } { x ^ { 2 } } , \quad x > 0$$ The shaded region is bounded by \(C\), the \(x\)-axis and the lines with equations \(x = 1\) and \(x = 2\). The shaded region is rotated through \(2 \pi\) radians about the \(x\)-axis. Using calculus, calculate the volume of the solid generated. Give your answer in the form \(\pi ( a + \ln b )\), where \(a\) and \(b\) are constants.
[0pt] [P2 January 2002 Question 4]
AQA C3 Q5
Standard +0.3
5 The diagram shows part of the graph of \(y = \mathrm { e } ^ { 2 x } - 9\). The graph cuts the coordinate axes at ( \(0 , a\) ) and ( \(b , 0\) ). \includegraphics[max width=\textwidth, alt={}, center]{9aac4ee4-2435-4315-a87d-fe9fa8e15665-004_817_908_479_550}
  1. State the value of \(a\), and show that \(b = \ln 3\).
  2. Show that \(y ^ { 2 } = \mathrm { e } ^ { 4 x } - 18 \mathrm { e } ^ { 2 x } + 81\).
  3. The shaded region \(R\) is rotated through \(360 ^ { \circ }\) about the \(x\)-axis. Find the volume of the solid formed, giving your answer in the form \(\pi ( p \ln 3 + q )\), where \(p\) and \(q\) are integers.
  4. Sketch the curve with equation \(y = \left| \mathrm { e } ^ { 2 x } - 9 \right|\) for \(x \geqslant 0\).
AQA C3 2006 January Q5
12 marks Standard +0.3
5 The diagram shows part of the graph of \(y = \mathrm { e } ^ { 2 x } - 9\). The graph cuts the coordinate axes at \(( 0 , a )\) and \(( b , 0 )\). \includegraphics[max width=\textwidth, alt={}, center]{908f530c-076d-47b1-90dd-38dbfe44f898-03_826_924_477_541}
  1. State the value of \(a\), and show that \(b = \ln 3\).
  2. Show that \(y ^ { 2 } = \mathrm { e } ^ { 4 x } - 18 \mathrm { e } ^ { 2 x } + 81\).
  3. The shaded region \(R\) is rotated through \(360 ^ { \circ }\) about the \(x\)-axis. Find the volume of the solid formed, giving your answer in the form \(\pi ( p \ln 3 + q )\), where \(p\) and \(q\) are integers.
  4. Sketch the curve with equation \(y = \left| \mathrm { e } ^ { 2 x } - 9 \right|\) for \(x \geqslant 0\).
OCR MEI C4 2008 June Q2
4 marks Standard +0.3
2 Fig. 2 shows the curve \(y = \sqrt { 1 + \mathrm { e } ^ { 2 x } }\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{8ad99e2a-4cef-40b3-af8d-673b97536227-02_432_873_587_635} \captionsetup{labelformat=empty} \caption{Fig. 2}
\end{figure} The region bounded by the curve, the \(x\)-axis, the \(y\)-axis and the line \(x = 1\) is rotated through \(360 ^ { \circ }\) about the \(x\)-axis. Show that the volume of the solid of revolution produced is \(\frac { 1 } { 2 } \pi \left( 1 + \mathrm { e } ^ { 2 } \right)\).