Integration with algebraic manipulation

Simplify or expand an expression (e.g., (3-√x)²/√x or (x+2)(x-1)) before integrating.

5 questions · Moderate -0.9

Sort by: Default | Easiest first | Hardest first
Edexcel C1 2005 June Q7
8 marks Moderate -0.8
7. (a) Show that \(\frac { ( 3 - \sqrt { } x ) ^ { 2 } } { \sqrt { } x }\) can be written as \(9 x ^ { - \frac { 1 } { 2 } } - 6 + x ^ { \frac { 1 } { 2 } }\). Given that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { ( 3 - \sqrt { } x ) ^ { 2 } } { \sqrt { } x } , x > 0\), and that \(y = \frac { 2 } { 3 }\) at \(x = 1\),
(b) find \(y\) in terms of \(x\).
OCR C2 2005 June Q3
7 marks Moderate -0.8
3
  1. Find \(\int ( 2 x + 1 ) ( x + 3 ) \mathrm { d } x\).
  2. Evaluate \(\int _ { 0 } ^ { 9 } \frac { 1 } { \sqrt { x } } \mathrm {~d} x\).
AQA C2 2009 June Q2
8 marks Easy -1.2
2
  1. Write down the value of \(n\) given that \(\frac { 1 } { x ^ { 4 } } = x ^ { n }\).
  2. Expand \(\left( 1 + \frac { 3 } { x ^ { 2 } } \right) ^ { 2 }\).
  3. Hence find \(\int \left( 1 + \frac { 3 } { x ^ { 2 } } \right) ^ { 2 } \mathrm {~d} x\).
  4. Hence find the exact value of \(\int _ { 1 } ^ { 3 } \left( 1 + \frac { 3 } { x ^ { 2 } } \right) ^ { 2 } \mathrm {~d} x\).
AQA C2 2012 June Q3
7 marks Moderate -0.8
3
  1. \(\quad\) Expand \(\left( x ^ { \frac { 3 } { 2 } } - 1 \right) ^ { 2 }\).
  2. Hence find \(\int \left( x ^ { \frac { 3 } { 2 } } - 1 \right) ^ { 2 } \mathrm {~d} x\).
  3. Hence find the value of \(\int _ { 1 } ^ { 4 } \left( x ^ { \frac { 3 } { 2 } } - 1 \right) ^ { 2 } \mathrm {~d} x\).
AQA C2 2014 June Q2
8 marks Moderate -0.8
2
  1. Find \(\int \left( 1 + 3 x ^ { \frac { 1 } { 2 } } + x ^ { \frac { 3 } { 2 } } \right) \mathrm { d } x\).
    1. The expression \(( 1 + y ) ^ { 3 }\) can be written in the form \(1 + 3 y + n y ^ { 2 } + y ^ { 3 }\). Write down the value of the constant \(n\).
    2. Hence, or otherwise, expand \(( 1 + \sqrt { x } ) ^ { 3 }\).
  2. Hence find the exact value of \(\int _ { 0 } ^ { 1 } ( 1 + \sqrt { x } ) ^ { 3 } \mathrm {~d} x\).