Periodic or repeating sequence

A sequence repeats in a pattern; find specific terms or sums by recognizing the period and using modular arithmetic.

12 questions · Moderate -0.5

Sort by: Default | Easiest first | Hardest first
Edexcel C12 2014 January Q5
7 marks Standard +0.8
5. A sequence is defined by $$\begin{aligned} u _ { 1 } & = 3 \\ u _ { n + 1 } & = 2 - \frac { 4 } { u _ { n } } , \quad n \geqslant 1 \end{aligned}$$ Find the exact values of
  1. \(u _ { 2 } , u _ { 3 }\) and \(u _ { 4 }\)
  2. \(u _ { 61 }\)
  3. \(\sum _ { i = 1 } ^ { 99 } u _ { i }\)
Edexcel C1 2006 January Q2
4 marks Moderate -0.8
2. The sequence of positive numbers \(u _ { 1 } , u _ { 2 } , u _ { 3 } , \ldots\) is given by: $$u _ { n + 1 } = \left( u _ { n } - 3 \right) ^ { 2 } , \quad u _ { 1 } = 1 .$$
  1. Find \(u _ { 2 } , u _ { 3 }\) and \(u _ { 4 }\).
  2. Write down the value of \(u _ { 20 }\).
Edexcel P2 2022 October Q3
7 marks Standard +0.3
  1. A sequence \(a _ { 1 } , a _ { 2 } , a _ { 3 } , \ldots\) is defined by
$$a _ { n } = \cos ^ { 2 } \left( \frac { \mathrm { n } \pi } { 3 } \right)$$ Find the exact values of
    1. \(a _ { 1 }\)
    2. \(a _ { 2 }\)
    3. \(a _ { 3 }\)
  1. Hence find the exact value of 50 $$n + \cos ^ { 2 } \frac { n \pi } { 3 }$$ You must make your method clear.
OCR C2 2005 January Q2
7 marks Moderate -0.3
2 A sequence \(u _ { 1 } , u _ { 2 } , u _ { 3 } , \ldots\) is defined by $$u _ { 1 } = 2 \quad \text { and } \quad u _ { n + 1 } = \frac { 1 } { 1 - u _ { n } } \text { for } n \geqslant 1 .$$
  1. Write down the values of \(u _ { 2 } , u _ { 3 } , u _ { 4 }\) and \(u _ { 5 }\).
  2. Deduce the value of \(u _ { 200 }\), showing your reasoning.
OCR C2 2006 June Q2
5 marks Moderate -0.8
2 A sequence of terms \(u _ { 1 } , u _ { 2 } , u _ { 3 } , \ldots\) is defined by $$u _ { 1 } = 2 \quad \text { and } \quad u _ { n + 1 } = 1 - u _ { n } \text { for } n \geqslant 1 .$$
  1. Write down the values of \(u _ { 2 } , u _ { 3 }\) and \(u _ { 4 }\).
  2. Find \(\sum _ { n = 1 } ^ { 100 } u _ { n }\).
OCR MEI C2 2008 January Q2
3 marks Easy -1.8
2 A sequence begins $$\begin{array} { l l l l l l l l l l l l } 1 & 2 & 3 & 4 & 5 & 1 & 2 & 3 & 4 & 5 & 1 & \ldots \end{array}$$ and continues in this pattern.
  1. Find the 48th term of this sequence.
  2. Find the sum of the first 48 terms of this sequence.
OCR MEI C2 Q11
12 marks Challenging +1.2
11 The sequence \(a _ { 1 } , a _ { 2 } , a _ { 3 } , \ldots \ldots\) where \(a _ { 1 }\) is a given real number is defined by \(a _ { n + 1 } = 1 - \frac { 1 } { a _ { n } }\).
  1. For the case when \(a _ { 1 } = 2\), find \(a _ { 2 } , a _ { 3 }\) and \(a _ { 4 }\). Describe the behaviour of this sequence
  2. For the case when \(a _ { 1 } = k\), where \(k\) is an integer greater than 1 , find \(a _ { 2 }\) in terms of \(k\) as a single fraction.
    Find also \(a _ { 3 }\) in its simplest form and hence deduce that \(a _ { 4 } = k\).
  3. Show that \(a _ { 2 } a _ { 3 } a _ { 4 } = - 1\) for any integer \(k\).
  4. When \(a _ { 1 } = 2\) evaluate \(\sum _ { i = 1 } ^ { 99 } a _ { i }\).
OCR MEI C2 Q12
5 marks Moderate -0.8
12 Calculate \(\sum _ { r = 3 } ^ { 6 } \frac { 12 } { r }\). 12 A sequence begins $$\begin{array} { l l l l l l l l l l l } 1 & 3 & 5 & 3 & 1 & 3 & 5 & 3 & 1 & 3 & \ldots \end{array}$$ and continues in this pattern.
  1. Find the 55th term of this sequence, showing your method.
  2. Find the sum of the first 55 terms of the sequence.
OCR MEI C2 Q3
3 marks Easy -1.8
3 A sequence begins $$\begin{array} { l l l l l l l l l l l l } 1 & 2 & 3 & 4 & 5 & 1 & 2 & 3 & 4 & 5 & 1 & \ldots \end{array}$$ and continues in this pattern.
  1. Find the 48th term of this sequence.
  2. Find the sum of the first 48 terms of this sequence.
OCR MEI C2 2010 January Q2
3 marks Easy -1.2
2 A sequence begins $$\begin{array} { l l l l l l l l l l l } 1 & 3 & 5 & 3 & 1 & 3 & 5 & 3 & 1 & 3 & \ldots \end{array}$$ and continues in this pattern.
  1. Find the 55th term of this sequence, showing your method.
  2. Find the sum of the first 55 terms of the sequence.
Edexcel Paper 2 2022 June Q3
4 marks Moderate -0.8
  1. A sequence of terms \(a _ { 1 } , a _ { 2 } , a _ { 3 } , \ldots\) is defined by
$$\begin{aligned} a _ { 1 } & = 3 \\ a _ { n + 1 } & = 8 - a _ { n } \end{aligned}$$
    1. Show that this sequence is periodic.
    2. State the order of this periodic sequence.
  1. Find the value of $$\sum _ { n = 1 } ^ { 85 } a _ { n }$$
Edexcel Paper 2 2023 June Q2
6 marks Moderate -0.3
  1. A sequence \(u _ { 1 } , u _ { 2 } , u _ { 3 } \ldots\) is defined by
$$\begin{aligned} u _ { 1 } & = 35 \\ u _ { n + 1 } & = u _ { n } + 7 \cos \left( \frac { n \pi } { 2 } \right) - 5 ( - 1 ) ^ { n } \end{aligned}$$
    1. Show that \(u _ { 2 } = 40\)
    2. Find the value of \(u _ { 3 }\) and the value of \(u _ { 4 }\) Given that the sequence is periodic with order 4
    1. write down the value of \(u _ { 5 }\)
    2. find the value of \(\sum _ { r = 1 } ^ { 25 } u _ { r }\)