Recurrence relation evaluation

Given a recurrence relation u_(n+1) = f(u_n), find specific terms or sums by iterative calculation.

63 questions · Moderate -0.6

Sort by: Default | Easiest first | Hardest first
Edexcel C1 2014 June Q3
5 marks Moderate -0.5
A sequence \(a _ { 1 } , a _ { 2 } , a _ { 3 } , \ldots\) is defined by $$\begin{array} { l l } a _ { n + 1 } = 4 a _ { n } - 3 , & n \geqslant 1 \\ a _ { 1 } = k , & \text { where } k \text { is a positive integer. } \end{array}$$
  1. Write down an expression for \(a _ { 2 }\) in terms of \(k\). Given that \(\sum _ { r = 1 } ^ { 3 } a _ { r } = 66\)
  2. find the value of \(k\).
Edexcel C1 2015 June Q4
8 marks Moderate -0.8
  1. A sequence \(U _ { 1 } , U _ { 2 } , U _ { 3 } , \ldots\) is defined by $$\begin{gathered} U _ { n + 2 } = 2 U _ { n + 1 } - U _ { n } , \quad n \geqslant 1 \\ U _ { 1 } = 4 \text { and } U _ { 2 } = 4 \end{gathered}$$ Find the value of
    (a) \(U _ { 3 }\) (b) \(\sum _ { n = 1 } ^ { 20 } U _ { n }\)
  2. Another sequence \(V _ { 1 } , V _ { 2 } , V _ { 3 } , \ldots\) is defined by
    (a) Find \(V _ { 3 }\) and \(V _ { 4 }\) in terms of \(k\). $$\begin{gathered} V _ { n + 2 } = 2 V _ { n + 1 } - V _ { n } , \quad n \geqslant 1 \\ V _ { 1 } = k \text { and } V _ { 2 } = 2 k , \text { where } k \text { is a constant } \end{gathered}$$ a) Find \(V _ { 3 }\)
Edexcel C1 Q4
5 marks Easy -1.2
A sequence \(a _ { 1 } , a _ { 2 } , a _ { 3 } , \ldots\) is defined by $$a _ { 1 } = k , \quad a _ { n + 1 } = 4 a _ { n } - 7 ,$$ where \(k\) is a constant.
  1. Write down an expression for \(a _ { 2 }\) in terms of \(k\).
  2. Find \(a _ { 3 }\) in terms of \(k\), simplifying your answer. Given that \(a _ { 3 } = 13\),
  3. find the value of \(k\).
OCR MEI C2 2007 June Q4
4 marks Easy -1.3
4
  1. Find the second and third terms of the sequence defined by the following. $$\begin{aligned} t _ { n + 1 } & = 2 t _ { n } + 5 \\ t _ { 1 } & = 3 \end{aligned}$$
  2. Find \(\sum _ { k = 1 } ^ { 3 } k ( k + 1 )\).
OCR C2 Q1
4 marks Moderate -0.8
  1. A sequence is defined by
$$u _ { n + 1 } = \frac { u _ { n } + 1 } { 3 } , \quad n = 1,2,3 , \ldots$$ Given that \(u _ { 3 } = 5\),
  1. find the value of \(u _ { 4 }\),
  2. find the value of \(u _ { 1 }\).
OCR C2 Q1
5 marks Moderate -0.8
  1. A sequence of terms is defined by
$$u _ { n } = 3 ^ { n } - 2 , \quad n \geq 1 .$$
  1. Write down the first four terms of the sequence. The same sequence can also be defined by the recurrence relation $$u _ { n + 1 } = a u _ { n } + b , \quad n \geq 1 , \quad u _ { 1 } = 1 ,$$ where \(a\) and \(b\) are constants.
  2. Find the values of \(a\) and \(b\).
OCR C2 Q3
7 marks Standard +0.3
3. The sequence \(u _ { 1 } , u _ { 2 } , u _ { 3 } , \ldots\) is defined by $$u _ { n + 1 } = \left( u _ { n } \right) ^ { 2 } - 1 , \quad n \geq 1 .$$ Given that \(u _ { 1 } = k\), where \(k\) is a constant,
  1. find expressions for \(u _ { 2 }\) and \(u _ { 3 }\) in terms of \(k\). Given also that \(u _ { 2 } + u _ { 3 } = 11\),
  2. find the possible values of \(k\).
OCR MEI C2 Q6
4 marks Easy -1.8
6 Find the second and third terms in the sequence given by $$\begin{aligned} & u _ { 1 } = 5 \\ & u _ { n + 1 } = u _ { n } + 3 \end{aligned}$$ Find also the sum of the first 50 terms of this sequence.
OCR MEI C2 Q3
5 marks Easy -1.2
3 A sequence is given by $$\begin{gathered} a _ { 1 } = 4 \\ a _ { r + 1 } = a _ { r } + 3 \end{gathered}$$ Write down the first 4 terms of this sequence.
Find the sum of the first 100 terms of the sequence.
OCR MEI C2 Q1
3 marks Moderate -0.8
1 A sequence is defined by \(u _ { 1 } = 2\) and \(u _ { k + 1 } = \frac { 10 } { u _ { k } ^ { 2 } }\).
Calculate \(\sum _ { k = 1 } ^ { 4 } u _ { k }\).
OCR MEI C2 Q3
3 marks Moderate -0.8
3 A sequence is defined by $$\begin{aligned} u _ { 1 } & = 10 \\ u _ { r + 1 } & = \frac { 5 } { u _ { r } ^ { 2 } } \end{aligned}$$ Calculate the values of \(u _ { 2 } , u _ { 3 }\) and \(u _ { 4 }\).
What happens to the terms of the sequence as \(r\) tends to infinity?
OCR MEI C2 Q6
2 marks Easy -1.2
6 You are given that $$\begin{aligned} u _ { 1 } & = 1 \\ u _ { n + 1 } & = \frac { u _ { n } } { 1 + u _ { n } } \end{aligned}$$ Find the values of \(u _ { 2 } , u _ { 3 }\) and \(u _ { 4 }\). Give your answers as fractions.
OCR MEI C2 Q9
4 marks Easy -1.2
9
  1. Find the second and third terms of the sequence defined by the following. $$\begin{aligned} t _ { n + 1 } & = 2 t _ { n } + 5 \\ t _ { 1 } & = 3 \end{aligned}$$
  2. Find \(\sum _ { k = 1 } ^ { 3 } k ( k + 1 )\).
Edexcel C1 2014 June Q5
5 marks Moderate -0.8
5. A sequence of numbers \(a _ { 1 } , a _ { 2 } , a _ { 3 } \ldots\) is defined by $$a _ { n + 1 } = 5 a _ { n } - 3 , \quad n \geqslant 1$$ Given that \(a _ { 2 } = 7\),
  1. find the value of \(a _ { 1 }\)
  2. Find the value of \(\sum _ { r = 1 } ^ { 4 } a _ { r }\)
OCR C2 2010 January Q8
10 marks Moderate -0.8
8 A sequence \(u _ { 1 } , u _ { 2 } , u _ { 3 } , \ldots\) is defined by $$u _ { 1 } = 8 \quad \text { and } \quad u _ { n + 1 } = u _ { n } + 3 .$$
  1. Show that \(u _ { 5 } = 20\).
  2. The \(n\)th term of the sequence can be written in the form \(u _ { n } = p n + q\). State the values of \(p\) and \(q\).
  3. State what type of sequence it is.
  4. Find the value of \(N\) such that \(\sum _ { n = 1 } ^ { 2 N } u _ { n } - \sum _ { n = 1 } ^ { N } u _ { n } = 1256\).
OCR C2 2013 January Q2
6 marks Moderate -0.5
2 A sequence \(u _ { 1 } , u _ { 2 } , u _ { 3 } , \ldots\) is defined by $$u _ { 1 } = 7 \text { and } u _ { n + 1 } = u _ { n } + 4 \text { for } n \geqslant 1 .$$
  1. Show that \(u _ { 17 } = 71\).
  2. Show that \(\sum _ { n = 1 } ^ { 35 } u _ { n } = \sum _ { n = 36 } ^ { 50 } u _ { n }\).
OCR C2 2012 June Q5
8 marks Moderate -0.8
5
  1. A sequence \(u _ { 1 } , u _ { 2 } , u _ { 3 } , \ldots\) is defined by $$u _ { 1 } = 4 \quad \text { and } \quad u _ { n + 1 } = \frac { 2 } { u _ { n } } \quad \text { for } n \geqslant 1 .$$
    1. Write down the values of \(u _ { 2 }\) and \(u _ { 3 }\).
    2. Describe the behaviour of the sequence.
  2. In an arithmetic progression the ninth term is 18 and the sum of the first nine terms is 72. Find the first term and the common difference.
OCR MEI C2 2011 June Q2
3 marks Moderate -0.8
2 A sequence is defined by $$\begin{aligned} u _ { 1 } & = 10 \\ u _ { r + 1 } & = \frac { 5 } { u _ { r } ^ { 2 } } \end{aligned}$$ Calculate the values of \(u _ { 2 } , u _ { 3 }\) and \(u _ { 4 }\).
What happens to the terms of the sequence as \(r\) tends to infinity?
OCR MEI C2 2012 June Q2
4 marks Easy -1.8
2 Find the second and third terms in the sequence given by $$\begin{aligned} & u _ { 1 } = 5 \\ & u _ { n + 1 } = u _ { n } + 3 . \end{aligned}$$ Find also the sum of the first 50 terms of this sequence.
OCR MEI C2 2015 June Q2
3 marks Moderate -0.8
2 A sequence is defined by \(u _ { 1 } = 2\) and \(u _ { k + 1 } = \frac { 10 } { u _ { k } ^ { 2 } }\).
Calculate \(\sum _ { k = 1 } ^ { 4 } u _ { k }\).
OCR MEI C2 2016 June Q2
3 marks Moderate -0.8
2 A sequence is defined as follows. \(u _ { 1 } = a\), where \(a > 0\) To obtain \(u _ { r + 1 }\)
  • find the remainder when \(u _ { r }\) is divided by 3 ,
  • multiply the remainder by 5 ,
  • the result is \(u _ { r + 1 }\).
Find \(\sum _ { r = 2 } ^ { 4 } u _ { r }\) in each of the following cases.
  1. \(a = 5\)
  2. \(a = 6\)
Edexcel Paper 1 2021 October Q3
6 marks Standard +0.3
  1. The sequence \(u _ { 1 } , u _ { 2 } , u _ { 3 } , \ldots\) is defined by
$$u _ { n + 1 } = k - \frac { 24 } { u _ { n } } \quad u _ { 1 } = 2$$ where \(k\) is an integer.
Given that \(u _ { 1 } + 2 u _ { 2 } + u _ { 3 } = 0\)
  1. show that $$3 k ^ { 2 } - 58 k + 240 = 0$$
  2. Find the value of \(k\), giving a reason for your answer.
  3. Find the value of \(u _ { 3 }\)
Edexcel Paper 1 Specimen Q3
4 marks Standard +0.8
  1. A sequence of numbers \(a _ { 1 } , a _ { 2 } , a _ { 3 } , \ldots\) is defined by
$$\begin{aligned} a _ { 1 } & = 3 \\ a _ { n + 1 } & = \frac { a _ { n } - 3 } { a _ { n } - 2 } , \quad n \in \mathbb { N } \end{aligned}$$
  1. Find \(\sum _ { r = 1 } ^ { 100 } a _ { r }\)
  2. Hence find \(\sum _ { r = 1 } ^ { 100 } a _ { r } + \sum _ { r = 1 } ^ { 99 } a _ { r }\)
Edexcel Paper 2 2024 June Q2
5 marks Moderate -0.3
  1. Jamie takes out an interest-free loan of \(\pounds 8100\)
Jamie makes a payment every month to pay back the loan.
Jamie repays \(\pounds 400\) in month \(1 , \pounds 390\) in month \(2 , \pounds 380\) in month 3 , and so on, so that the amounts repaid each month form an arithmetic sequence.
  1. Show that Jamie repays \(\pounds 290\) in month 12 After Jamie's \(N\) th payment, the loan is completely paid back.
  2. Show that \(N ^ { 2 } - 81 N + 1620 = 0\)
  3. Hence find the value of \(N\).
Edexcel Paper 2 2024 June Q4
5 marks Moderate -0.3
  1. A sequence \(u _ { 1 } , u _ { 2 } , u _ { 3 } , \ldots\) is defined by
$$\begin{aligned} u _ { n + 1 } & = k u _ { n } - 5 \\ u _ { 1 } & = 6 \end{aligned}$$ where \(k\) is a positive constant.
Given that \(u _ { 3 } = - 1\)
  1. show that $$6 k ^ { 2 } - 5 k - 4 = 0$$
  2. Hence
    1. find the value of \(k\),
    2. find the value of \(\sum _ { r = 1 } ^ { 3 } u _ { r }\)