Evaluate log expression using laws

Calculate the numerical value of a logarithmic expression by applying addition, subtraction, and power laws.

7 questions · Easy -1.2

Sort by: Default | Easiest first | Hardest first
OCR C2 2005 June Q7
7 marks Moderate -0.8
7
  1. Evaluate \(\log _ { 5 } 15 + \log _ { 5 } 20 - \log _ { 5 } 12\).
  2. Given that \(y = 3 \times 10 ^ { 2 x }\), show that \(x = a \log _ { 10 } ( b y )\), where the values of the constants \(a\) and \(b\) are to be found.
OCR MEI C2 2009 June Q9
3 marks Easy -1.2
9 Simplify
  1. \(10 - 3 \log _ { a } a\),
  2. \(\frac { \log _ { 10 } a ^ { 5 } + \log _ { 10 } \sqrt { a } } { \log _ { 10 } a }\). Section B (36 marks)
OCR MEI C2 2011 January Q7
4 marks Easy -1.3
7 Simplify
  1. \(\log _ { 10 } x ^ { 5 } + 3 \log _ { 10 } x ^ { 4 }\),
  2. \(\log _ { a } 1 - \log _ { a } a ^ { b }\).
OCR MEI C2 2011 June Q9
3 marks Moderate -0.8
9 You are given that $$\log _ { a } x = \frac { 1 } { 2 } \log _ { a } 16 + \log _ { a } 75 - 2 \log _ { a } 5 .$$ Find the value of \(x\).
AQA C2 2005 January Q5
7 marks Easy -1.2
5
  1. Given that $$\log _ { a } x = 3 \log _ { a } 6 - \log _ { a } 8$$ where \(a\) is a positive constant, show that \(x = 27\).
  2. Write down the value of:
    1. \(\quad \log _ { 4 } 1\);
    2. \(\log _ { 4 } 4\);
    3. \(\log _ { 4 } 2\);
    4. \(\quad \log _ { 4 } 8\).
AQA C2 2008 June Q5
5 marks Easy -1.2
5
  1. Write down the value of:
    1. \(\log _ { a } 1\);
    2. \(\log _ { a } a\).
  2. Given that $$\log _ { a } x = \log _ { a } 5 + \log _ { a } 6 - \log _ { a } 1.5$$ find the value of \(x\).
AQA Paper 1 2019 June Q1
1 marks Easy -1.8
1 Given that \(a > 0\), determine which of these expressions is not equivalent to the others. Circle your answer.
[0pt] [1 mark] $$- 2 \log _ { 10 } \left( \frac { 1 } { a } \right) \quad 2 \log _ { 10 } ( a ) \quad \log _ { 10 } \left( a ^ { 2 } \right) \quad - 4 \log _ { 10 } ( \sqrt { a } )$$