Solve exponential equation by substitution

A question is this type if and only if it requires solving an exponential equation using a substitution like u = e^x or u = a^x to form a quadratic or simpler equation.

16 questions · Moderate -0.6

Sort by: Default | Easiest first | Hardest first
CAIE P3 2011 November Q1
4 marks Moderate -0.8
1 Using the substitution \(u = \mathrm { e } ^ { x }\), or otherwise, solve the equation $$\mathrm { e } ^ { x } = 1 + 6 \mathrm { e } ^ { - x }$$ giving your answer correct to 3 significant figures.
CAIE P3 2015 November Q2
5 marks Moderate -0.3
2 Using the substitution \(u = 3 ^ { x }\), solve the equation \(3 ^ { x } + 3 ^ { 2 x } = 3 ^ { 3 x }\) giving your answer correct to 3 significant figures.
CAIE P3 Specimen Q2
5 marks Moderate -0.3
2 Using the substitution \(u = 3 ^ { x }\), solve the equation \(3 ^ { x } + 3 ^ { 2 x } = 3 ^ { 3 x }\) giving your answer correct to 3 significant figures.
CAIE P2 2006 November Q2
6 marks Moderate -0.8
2
  1. Express \(4 ^ { x }\) in terms of \(y\), where \(y = 2 ^ { x }\).
  2. Hence find the values of \(x\) that satisfy the equation $$3 \left( 4 ^ { x } \right) - 10 \left( 2 ^ { x } \right) + 3 = 0 ,$$ giving your answers correct to 2 decimal places.
Edexcel P1 2023 January Q5
6 marks Moderate -0.3
  1. In this question you must show all stages of your working.
Solutions relying on calculator technology are not acceptable.
  1. By substituting \(p = 3 ^ { x }\), show that the equation $$3 \times 9 ^ { x } + 3 ^ { x + 2 } = 1 + 3 ^ { x - 1 }$$ can be rewritten in the form $$9 p ^ { 2 } + 26 p - 3 = 0$$
  2. Hence solve $$3 \times 9 ^ { x } + 3 ^ { x + 2 } = 1 + 3 ^ { x - 1 }$$
Edexcel P1 2024 January Q4
6 marks Moderate -0.3
  1. In this question you must show all stages of your working.
Solutions relying on calculator technology are not acceptable.
  1. By substituting \(p = 2 ^ { x }\), show that the equation $$2 \times 4 ^ { x } - 2 ^ { x + 3 } = 17 \times 2 ^ { x - 1 } - 4$$ can be written in the form $$4 p ^ { 2 } - 33 p + 8 = 0$$
  2. Hence solve $$2 \times 4 ^ { x } - 2 ^ { x + 3 } = 17 \times 2 ^ { x - 1 } - 4$$
Edexcel C1 2015 June Q7
5 marks Moderate -0.8
  1. Given that \(y = 2 ^ { x }\),
    1. express \(4 ^ { x }\) in terms of \(y\).
    2. Hence, or otherwise, solve
    $$8 \left( 4 ^ { x } \right) - 9 \left( 2 ^ { x } \right) + 1 = 0$$
Edexcel C1 2017 June Q6
6 marks Moderate -0.8
6. (a) Given \(y = 2 ^ { x }\), show that $$2 ^ { 2 x + 1 } - 17 \left( 2 ^ { x } \right) + 8 = 0$$ can be written in the form $$2 y ^ { 2 } - 17 y + 8 = 0$$ (b) Hence solve $$2 ^ { 2 x + 1 } - 17 \left( 2 ^ { x } \right) + 8 = 0$$
Edexcel C2 2011 January Q8
8 marks Moderate -0.8
  1. (a) Sketch the graph of \(y = 7 ^ { x } , x \in \mathbb { R }\), showing the coordinates of any points at which the graph crosses the axes.
    (b) Solve the equation
$$7 ^ { 2 x } - 4 \left( 7 ^ { x } \right) + 3 = 0$$ giving your answers to 2 decimal places where appropriate.
Edexcel C2 2014 June Q8
7 marks Moderate -0.8
8. (a) Sketch the graph of $$y = 3 ^ { x } , \quad x \in \mathbb { R }$$ showing the coordinates of any points at which the graph crosses the axes.
(b) Use algebra to solve the equation $$3 ^ { 2 x } - 9 \left( 3 ^ { x } \right) + 18 = 0$$ giving your answers to 2 decimal places where appropriate.
OCR C1 Q6
10 marks Moderate -0.8
6. (a) Given that \(y = 2 ^ { x }\), find expressions in terms of \(y\) for
  1. \(2 ^ { x + 2 }\),
  2. \(2 ^ { 3 - x }\).
    (b) Show that using the substitution \(y = 2 ^ { x }\), the equation $$2 ^ { x + 2 } + 2 ^ { 3 - x } = 33$$ can be rewritten as $$4 y ^ { 2 } - 33 y + 8 = 0$$ (c) Hence solve the equation $$2 ^ { x + 2 } + 2 ^ { 3 - x } = 33$$
OCR MEI C3 2010 January Q1
4 marks Easy -1.2
1 Solve the equation \(\mathrm { e } ^ { 2 x } - 5 \mathrm { e } ^ { x } = 0\).
Edexcel C1 Q7
10 marks Moderate -0.8
7. (a) Given that \(y = 2 ^ { x }\), find expressions in terms of \(y\) for
  1. \(2 ^ { x + 2 }\),
  2. \(2 ^ { 3 - x }\).
    (b) Show that using the substitution \(y = 2 ^ { x }\), the equation $$2 ^ { x + 2 } + 2 ^ { 3 - x } = 33$$ can be rewritten as $$4 y ^ { 2 } - 33 y + 8 = 0$$ (c) Hence solve the equation $$2 ^ { x + 2 } + 2 ^ { 3 - x } = 33$$
AQA C2 2008 January Q8
12 marks Moderate -0.8
8
  1. Sketch the graph of \(y = 3 ^ { x }\), stating the coordinates of the point where the graph crosses the \(y\)-axis.
  2. Describe a single geometrical transformation that maps the graph of \(y = 3 ^ { x }\) :
    1. onto the graph of \(y = 3 ^ { 2 x }\);
    2. onto the graph of \(y = 3 ^ { x + 1 }\).
    1. Using the substitution \(Y = 3 ^ { x }\), show that the equation $$9 ^ { x } - 3 ^ { x + 1 } + 2 = 0$$ can be written as $$( Y - 1 ) ( Y - 2 ) = 0$$
    2. Hence show that the equation \(9 ^ { x } - 3 ^ { x + 1 } + 2 = 0\) has a solution \(x = 0\) and, by using logarithms, find the other solution, giving your answer to four decimal places.
      (4 marks)
AQA C2 2011 June Q4
10 marks Moderate -0.3
4
  1. Sketch the curve with equation \(y = 4 ^ { x }\), indicating the coordinates of any point where the curve intersects the coordinate axes.
    (2 marks)
  2. Describe the geometrical transformation that maps the graph of \(y = 4 ^ { x }\) onto the graph of \(y = 4 ^ { x } - 5\).
    1. Use the substitution \(Y = 2 ^ { x }\) to show that the equation \(4 ^ { x } - 2 ^ { x + 2 } - 5 = 0\) can be written as \(Y ^ { 2 } - 4 Y - 5 = 0\).
    2. Hence show that the equation \(4 ^ { x } - 2 ^ { x + 2 } - 5 = 0\) has only one real solution. Use logarithms to find this solution, giving your answer to three decimal places.
      (4 marks)
OCR C2 Q7
9 marks Moderate -0.3
7. (a) Given that \(y = 3 ^ { x }\), find expressions in terms of \(y\) for
  1. \(3 ^ { x + 1 }\),
  2. \(3 ^ { 2 x - 1 }\).
    (b) Hence, or otherwise, solve the equation $$3 ^ { x + 1 } - 3 ^ { 2 x - 1 } = 6$$