Rational inequality algebraically

Solve inequalities of the form f(x)/g(x) > h(x) or similar by algebraic manipulation, finding critical points, and sign analysis.

35 questions · Standard +0.2

Sort by: Default | Easiest first | Hardest first
Edexcel F2 2024 January Q1
5 marks Moderate -0.3
  1. Using algebra, solve the inequality
$$\frac { 1 } { x + 2 } > 2 x + 3$$
Edexcel F2 2014 June Q2
7 marks Standard +0.3
2. Use algebra to find the set of values of \(x\) for which $$\frac { 6 } { x - 3 } \leqslant x + 2$$
Edexcel F2 2015 June Q1
7 marks Moderate -0.3
  1. Using algebra, find the set of values of \(x\) for which
$$\frac { x } { x + 2 } < \frac { 2 } { x + 5 }$$
Edexcel F2 2017 June Q2
9 marks Moderate -0.3
  1. Use algebra to find the set of values of \(x\) for which
$$\frac { x - 4 } { ( x + 3 ) } \leqslant \frac { 5 } { x ( x + 3 ) }$$
Edexcel F2 2023 June Q3
7 marks Challenging +1.2
  1. In this question you must show all stages of your working.
\section*{Solutions relying on calculator technology are not acceptable.} Given that $$\frac { x + 2 } { x + 4 } \leqslant \frac { x } { k ( x - 1 ) }$$ where \(k\) is a positive constant,
  1. show that $$( x + 4 ) ( x - 1 ) \left( p x ^ { 2 } + q x + r \right) \leqslant 0$$ where \(p , q\) and \(r\) are expressions in terms of \(k\) to be determined.
  2. Hence, or otherwise, determine the values for \(x\) for which $$\frac { x + 2 } { x + 4 } \leqslant \frac { x } { 3 ( x - 1 ) }$$
Edexcel F2 2024 June Q5
6 marks Standard +0.8
  1. In this question you must show all stages of your working.
Solutions relying entirely on calculator technology are not acceptable.
Use algebra to determine the values of \(x\) for which $$\frac { x + 1 } { ( x - 3 ) ( x + 2 ) } \leqslant 1 - \frac { 2 } { x - 3 }$$
Edexcel FP2 2002 June Q5
7 marks Moderate -0.3
5. Using algebra, find the set of values of \(x\) for which \(2 x - 5 > \frac { 3 } { x }\).
Edexcel FP2 2003 June Q5
6 marks Standard +0.3
5. Solve the inequality \(\frac { 1 } { 2 x + 1 } > \frac { x } { 3 x - 2 }\).
Edexcel FP2 2007 June Q5
7 marks Standard +0.3
5. Find the set of values of \(x\) for which $$\frac { x + 1 } { 2 x - 3 } < \frac { 1 } { x - 3 }$$
Edexcel FP2 2011 June Q1
7 marks Standard +0.3
  1. Find the set of values of \(x\) for which
$$\frac { 3 } { x + 3 } > \frac { x - 4 } { x }$$
Edexcel FP2 2013 June Q2
7 marks Standard +0.3
2. Use algebra to find the set of values of \(x\) for which $$\frac { 6 x } { 3 - x } > \frac { 1 } { x + 1 }$$
Edexcel FP2 2014 June Q2
5 marks Standard +0.3
2. Using algebra, find the set of values of \(x\) for which $$3 x - 5 < \frac { 2 } { x }$$
Edexcel FP2 2016 June Q1
6 marks Standard +0.3
  1. Use algebra to find the set of values of \(x\) for which
$$\frac { x } { x + 1 } < \frac { 2 } { x + 2 }$$
Edexcel FP2 2017 June Q2
9 marks Standard +0.3
2. Use algebra to find the set of values of \(x\) for which $$\frac { x - 2 } { 2 ( x + 2 ) } \leqslant \frac { 12 } { x ( x + 2 ) }$$ "
Edexcel FP2 Specimen Q1
7 marks Standard +0.3
  1. Find the set of values of \(x\) for which
$$\frac { x } { x - 3 } > \frac { 1 } { x - 2 }$$
Edexcel F2 2021 October Q2
8 marks Standard +0.3
2. Use algebra to determine the set of values of \(x\) for which $$\frac { x } { 2 - x } \leqslant \frac { x + 3 } { x }$$ (Solutions relying entirely on graphical methods are not acceptable.)
(8)
Edexcel F2 2018 June Q1
5 marks Moderate -0.5
  1. Use algebra to find the set of values of \(x\) for which
$$\frac { 1 } { x - 2 } > \frac { 2 } { x }$$
OCR MEI FP1 2013 January Q4
7 marks Standard +0.3
4
  1. Show that \(x ^ { 2 } - x + 2 > 0\) for all real \(x\).
  2. Solve the inequality \(\frac { 2 x } { x ^ { 2 } - x + 2 } > x\).
OCR MEI FP1 2009 June Q3
7 marks Standard +0.3
3
  1. Sketch the graph of \(y = \frac { 2 } { x + 4 }\).
  2. Solve the inequality $$\frac { 2 } { x + 4 } \leqslant x + 3$$ showing your working clearly.
OCR MEI FP1 2011 June Q4
6 marks Standard +0.3
4 Solve the inequality \(\frac { 5 x } { x ^ { 2 } + 4 } < x\).
OCR MEI FP1 2012 June Q4
4 marks Moderate -0.8
4 Solve the inequality \(\frac { 3 } { x - 4 } > 1\).
Edexcel AS Paper 1 2023 June Q4
5 marks Easy -1.2
  1. (a) Sketch the curve with equation
$$y = \frac { k } { x } \quad x \neq 0$$ where \(k\) is a positive constant.
(b) Hence or otherwise, solve $$\frac { 16 } { x } \leqslant 2$$
AQA FP1 2006 January Q4
10 marks Standard +0.3
4 A curve has equation $$y = \frac { 6 x } { x - 1 }$$
  1. Write down the equations of the two asymptotes to the curve.
  2. Sketch the curve and the two asymptotes.
  3. Solve the inequality $$\frac { 6 x } { x - 1 } < 3$$
Edexcel FP1 AS 2018 June Q3
7 marks Standard +0.8
  1. Use algebra to find the values of \(x\) for which
$$\frac { x } { x ^ { 2 } - 2 x - 3 } \leqslant \frac { 1 } { x + 3 }$$
V349 SIHI NI IMIMM ION OCVJYV SIHIL NI LIIIM ION OOVJYV SIHIL NI JIIYM ION OC
Edexcel FP1 AS 2019 June Q2
6 marks Standard +0.3
  1. A student was set the following problem.
Use algebra to find the set of values of \(x\) for which $$\frac { x } { x - 24 } > \frac { 1 } { x + 11 }$$ The student's attempt at a solution is written below. $$\begin{gathered} x ( x - 24 ) ( x + 11 ) ^ { 2 } > ( x + 11 ) ( x - 24 ) ^ { 2 } \\ x ( x - 24 ) ( x + 11 ) ^ { 2 } - ( x + 11 ) ( x - 24 ) ^ { 2 } > 0 \\ ( x - 24 ) ( x + 11 ) [ x ( x + 11 ) - x - 24 ] > 0 \\ ( x - 24 ) ( x + 11 ) \left[ x ^ { 2 } + 10 x - 24 \right] > 0 \\ ( x - 24 ) ( x + 11 ) ( x + 12 ) ( x - 2 ) > 0 \\ x = 24 , x = - 11 , x = - 12 , x = 2 \\ \{ x \in \mathbb { R } : - 12 < x < - 11 \} \cup \{ x \in \mathbb { R } : 2 < x < 24 \} \end{gathered}$$ Line 3 There are errors in the student's solution.
  1. Identify the error made
    1. in line 3
    2. in line 7
  2. Find a correct solution to this problem.