Particular solution with initial conditions

A question is this type if and only if it asks to find a particular solution satisfying given initial conditions for y and dy/dx at a specific point.

64 questions · Standard +0.8

Sort by: Default | Easiest first | Hardest first
CAIE Further Paper 2 2022 June Q7
11 marks Standard +0.3
7 The variables \(x\) and \(y\) are related by the differential equation $$4 \frac { d ^ { 2 } y } { d x ^ { 2 } } - y = 3$$ It is given that, when \(x = 0 , y = - 3\) and \(\frac { \mathrm { dy } } { \mathrm { dx } } = 2\).
  1. Find \(y\) in terms of \(x\).
  2. Deduce the exact value of \(x\) for which \(y = 0\). Give your answer in logarithmic form.
CAIE Further Paper 2 2023 June Q6
11 marks Challenging +1.2
6 Find the particular solution of the differential equation $$\frac { d ^ { 2 } x } { d t ^ { 2 } } - 12 \frac { d x } { d t } + 36 x = 37 \sin t$$ given that, when \(t = 0 , x = \frac { d x } { d t } = 0\).
CAIE Further Paper 2 2020 November Q6
11 marks Standard +0.8
6 Find the particular solution of the differential equation $$\frac { d ^ { 2 } x } { d t ^ { 2 } } + 8 \frac { d x } { d t } + 15 x = 102 \cos 3 t$$ given that, when \(t = 0 , x = 1\) and \(\frac { \mathrm { dx } } { \mathrm { dt } } = 0\).
CAIE Further Paper 2 2021 November Q5
11 marks Standard +0.8
5 Find the particular solution of the differential equation $$\frac { d ^ { 2 } y } { d x ^ { 2 } } - 2 \frac { d y } { d x } + y = 4 \cos x$$ given that, when \(x = 0 , y = - 4\) and \(\frac { d y } { d x } = 3\).
CAIE Further Paper 2 2022 November Q5
10 marks Standard +0.8
5 Find the particular solution of the differential equation $$2 \frac { d ^ { 2 } y } { d x ^ { 2 } } + 2 \frac { d y } { d x } + y = 4 x ^ { 2 } + 3 x + 3$$ given that, when \(x = 0 , y = \frac { d y } { d x } = 0\).
CAIE Further Paper 2 2023 November Q4
10 marks Standard +0.8
4 Find the particular solution of the differential equation $$\frac { d ^ { 2 } y } { d x ^ { 2 } } + 2 \frac { d y } { d x } + 3 y = 27 x ^ { 2 }$$ given that, when \(x = 0 , y = 2\) and \(\frac { \mathrm { dy } } { \mathrm { dx } } = - 8\).
CAIE Further Paper 2 2023 November Q4
10 marks Standard +0.3
4 Find the particular solution of the differential equation $$\frac { d ^ { 2 } y } { d x ^ { 2 } } + 2 \frac { d y } { d x } + 3 y = 27 x ^ { 2 }$$ given that, when \(x = 0 , y = 2\) and \(\frac { d y } { d x } = - 8\).
CAIE Further Paper 2 2024 November Q5
10 marks Standard +0.3
5 Find the particular solution of the differential equation $$6 \frac { \mathrm {~d} ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } - 5 \frac { \mathrm {~d} x } { \mathrm {~d} t } + x = t ^ { 2 } + t + 1$$ given that, when \(t = 0 , x = 12\) and \(\frac { \mathrm { d } x } { \mathrm {~d} t } = - 6\).
[0pt] [10] \includegraphics[max width=\textwidth, alt={}, center]{374b91df-926d-4f7f-a1d3-a54c70e8ff0e-10_2715_40_110_2007} \includegraphics[max width=\textwidth, alt={}, center]{374b91df-926d-4f7f-a1d3-a54c70e8ff0e-11_2726_35_97_20}
CAIE Further Paper 2 2024 November Q5
10 marks Standard +0.3
5 Find the particular solution of the differential equation $$3 \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 2 \frac { \mathrm {~d} y } { \mathrm {~d} x } + y = x ^ { 2 }$$ given that, when \(x = 0 , y = \frac { \mathrm { d } y } { \mathrm {~d} x } = 0\). \includegraphics[max width=\textwidth, alt={}, center]{bc601b16-c106-43a2-a2fc-676b5c836096-11_2726_35_97_20} \includegraphics[max width=\textwidth, alt={}, center]{bc601b16-c106-43a2-a2fc-676b5c836096-12_869_636_260_715} \includegraphics[max width=\textwidth, alt={}, center]{bc601b16-c106-43a2-a2fc-676b5c836096-12_2720_38_109_2009}
(b) Use a similar method to find, in terms of \(n\), a lower bound \(L _ { n }\) for \(\int _ { 0 } ^ { 1 } \mathrm { e } ^ { 1 - x } \mathrm {~d} x\).
(c) Show that \(\lim _ { n \rightarrow \infty } \left( U _ { n } - L _ { n } \right) = 0\).
(d) Use the Maclaurin's series for \(\mathrm { e } ^ { x }\) given in the list of formulae (MF19) to find the first three terms of the series expansion of \(z \left( 1 - \mathrm { e } ^ { - \frac { 1 } { z } } \right)\), in ascending powers of \(\frac { 1 } { z }\), and deduce the value of \(\lim _ { n \rightarrow \infty } \left( U _ { n } \right)\).
CAIE Further Paper 2 2024 November Q5
10 marks Standard +0.8
5 Find the particular solution of the differential equation $$6 \frac { \mathrm {~d} ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } - 5 \frac { \mathrm {~d} x } { \mathrm {~d} t } + x = t ^ { 2 } + t + 1$$ given that, when \(t = 0 , x = 12\) and \(\frac { \mathrm { d } x } { \mathrm {~d} t } = - 6\).
[0pt] [10] \includegraphics[max width=\textwidth, alt={}, center]{4af32247-c1f9-4c1f-bdf8-bafe17aca1dc-10_2715_40_110_2007} \includegraphics[max width=\textwidth, alt={}, center]{4af32247-c1f9-4c1f-bdf8-bafe17aca1dc-11_2726_35_97_20}
Edexcel F2 2021 January Q6
12 marks Challenging +1.2
6. (a) Determine the general solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 2 \frac { \mathrm {~d} y } { \mathrm {~d} x } + 5 y = 6 \cos x$$ (b) Find the particular solution for which \(y = 0\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 0\) at \(x = 0\)
Edexcel F2 2015 June Q6
13 marks Challenging +1.2
  1. (a) Find the general solution of the differential equation
$$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 2 \frac { \mathrm {~d} y } { \mathrm {~d} x } - 3 y = 2 \sin x$$ Given that \(y = 0\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 1\) when \(x = 0\) (b) find the particular solution of differential equation (I).
Edexcel F2 2016 June Q6
14 marks Standard +0.8
6. (a) Find the general solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 3 \frac { \mathrm {~d} y } { \mathrm {~d} x } + 2 y = 3 x ^ { 2 } + 2 x + 1$$ (9)
(b) Find the particular solution of this differential equation for which \(y = 0\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 0\) when \(x = 0\) (5)
Edexcel F2 2021 June Q6
13 marks Standard +0.8
6. (a) Find the general solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 6 \frac { \mathrm {~d} y } { \mathrm {~d} x } + 8 y = 2 x ^ { 2 } + x$$ (b) Find the particular solution of this differential equation for which \(y = 1\) and $$\frac { \mathrm { d } y } { \mathrm {~d} x } = 0 \text { when } x = 0$$
Edexcel F2 2023 June Q4
11 marks Challenging +1.2
  1. (a) Determine the general solution of the differential equation
$$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 8 \frac { \mathrm {~d} y } { \mathrm {~d} x } + 16 y = 48 x ^ { 2 } - 34$$ Given that \(y = 4\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 21\) at \(x = 0\) (b) determine the particular solution of the differential equation.
(c) Hence find the value of \(y\) at \(x = - 2\), giving your answer in the form \(p \mathrm { e } ^ { q } + r\) where \(p , q\) and \(r\) are integers to be determined.
Edexcel FP2 2002 June Q7
14 marks Standard +0.3
7. (a) Find the general solution of the differential equation $$2 \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} t ^ { 2 } } + 7 \frac { \mathrm {~d} y } { \mathrm {~d} t } + 3 y = 3 t ^ { 2 } + 11 t$$ (b) Find the particular solution of this differential equation for which \(y = 1\) and \(\frac { \mathrm { d } y } { \mathrm {~d} t } = 1\) when \(t = 0\).
(c) For this particular solution, calculate the value of \(y\) when \(t = 1\).
Edexcel FP2 2004 June Q8
12 marks Standard +0.8
8. (a) Find the general solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} t ^ { 2 } } + 2 \frac { \mathrm {~d} y } { \mathrm {~d} t } + 2 y = 2 \mathrm { e } ^ { - t }$$ (b) Find the particular solution that satisfies \(y = 1\) and \(\frac { \mathrm { d } y } { \mathrm {~d} t } = 1\) at \(t = 0\).
(6)(Total 12 marks)
Edexcel FP2 2007 June Q7
12 marks Standard +0.8
7. For the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 3 \frac { \mathrm {~d} y } { \mathrm {~d} x } + 2 y = 2 x ( x + 3 )$$ find the solution for which at \(x = 0 , \frac { \mathrm {~d} y } { \mathrm {~d} x } = 1\) and \(y = 1\).
(Total 12 marks)
Edexcel FP2 2014 June Q5
12 marks Standard +0.8
  1. (a) Find the general solution of the differential equation
$$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 2 \frac { \mathrm {~d} y } { \mathrm {~d} x } + 10 y = 27 \mathrm { e } ^ { - x }$$ (b) Find the particular solution that satisfies \(y = 0\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 0\) when \(x = 0\)
Edexcel FP2 2017 June Q5
13 marks Standard +0.8
5. (a) Find the general solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 2 \frac { \mathrm {~d} y } { \mathrm {~d} x } = 26 \sin 3 x$$ (b) Find the particular solution of this differential equation for which \(y = 0\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 0\) when \(x = 0\) when \(x = 0\)
Edexcel FP2 2018 June Q6
13 marks Standard +0.8
6. (a) Find the general solution of the differential equation $$6 \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 5 \frac { \mathrm {~d} y } { \mathrm {~d} x } - 6 y = x - 6 x ^ { 2 }$$ (b) Find the particular solution for which \(y = 0\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 3 } { 2 }\) when \(x = 0\)
Edexcel F2 2018 Specimen Q6
13 marks Challenging +1.2
  1. (a) Find the general solution of the differential equation
$$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 2 \frac { \mathrm {~d} y } { \mathrm {~d} x } - 3 y = 2 \sin x$$ Given that \(y = 0\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 1\) when \(x = 0\) (b) find the particular solution of differential equation (I).
Edexcel FP2 2006 January Q2
13 marks Standard +0.3
  1. Find the general solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } + 2 \frac { \mathrm {~d} x } { \mathrm {~d} t } + 5 x = 0$$
  2. Given that \(x = 1\) and \(\frac { \mathrm { d } x } { \mathrm {~d} t } = 1\) at \(t = 0\), find the particular solution of the differential equation, giving your answer in the form \(x = \mathrm { f } ( t )\).
  3. Sketch the curve with equation \(x = \mathrm { f } ( t ) , 0 \leq t \leq \pi\), showing the coordinates, as multiples of \(\pi\), of the points where the curve cuts the \(x\)-axis.
    (4)(Total 13 marks)
OCR FP3 2013 June Q5
11 marks Challenging +1.2
5 Find the solution of the differential equation \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 2 \frac { \mathrm {~d} y } { \mathrm {~d} x } + 5 y = \mathrm { e } ^ { - x }\) for which \(y = \frac { \mathrm { d } y } { \mathrm {~d} x } = 0\) when \(x = 0\).
OCR FP3 2014 June Q5
10 marks Standard +0.8
5 Solve the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 5 \frac { \mathrm {~d} y } { \mathrm {~d} x } + 6 y = \mathrm { e } ^ { - x }$$ subject to the conditions \(y = \frac { \mathrm { d } y } { \mathrm {~d} x } = 0\) when \(x = 0\).