- (a) Determine the general solution of the differential equation
$$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 8 \frac { \mathrm {~d} y } { \mathrm {~d} x } + 16 y = 48 x ^ { 2 } - 34$$
Given that \(y = 4\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 21\) at \(x = 0\)
(b) determine the particular solution of the differential equation.
(c) Hence find the value of \(y\) at \(x = - 2\), giving your answer in the form \(p \mathrm { e } ^ { q } + r\) where \(p , q\) and \(r\) are integers to be determined.