Integrating factor with non-standard form

Questions where the integrating factor is given or must be shown to have a specific non-exponential form (e.g., x + √(x²+1)).

9 questions · Challenging +1.1

Sort by: Default | Easiest first | Hardest first
CAIE Further Paper 2 2020 June Q7
11 marks Challenging +1.8
7
  1. Show that an appropriate integrating factor for $$\left( x ^ { 2 } + 1 \right) \frac { d y } { d x } + y \sqrt { x ^ { 2 } + 1 } = x ^ { 2 } - x \sqrt { x ^ { 2 } + 1 }$$ is \(x + \sqrt { x ^ { 2 } + 1 }\).
  2. Hence find the solution of the differential equation $$\left( x ^ { 2 } + 1 \right) \frac { d y } { d x } + y \sqrt { x ^ { 2 } + 1 } = x ^ { 2 } - x \sqrt { x ^ { 2 } + 1 }$$ for which \(y = \ln 2\) when \(x = 0\). Give your answer in the form \(y = f ( x )\).
CAIE Further Paper 2 2021 November Q7
11 marks Challenging +1.8
7
  1. Show that an appropriate integrating factor for $$\sqrt { x ^ { 2 } - 1 } \frac { d y } { d x } + y = x ^ { 2 } - x \sqrt { x ^ { 2 } - 1 }$$ is \(x + \sqrt { x ^ { 2 } - 1 }\).
  2. Hence find the solution of the differential equation $$\sqrt { x ^ { 2 } - 1 } \frac { d y } { d x } + y = x ^ { 2 } - x \sqrt { x ^ { 2 } - 1 }$$ for which \(y = 1\) when \(x = \frac { 5 } { 4 }\). Give your answer in the form \(y = f ( x )\).
Edexcel FP2 2004 June Q2
10 marks Standard +0.3
$$\frac { \mathrm { d } y } { \mathrm {~d} x } + y \left( 1 + \frac { 3 } { x } \right) = \frac { 1 } { x ^ { 2 } } , \quad x > 0$$
  1. Verify that \(x ^ { 3 } \mathrm { e } ^ { x }\) is an integrating factor for the differential equation.
  2. Find the general solution of the differential equation.
  3. Given that \(y = 1\) at \(x = 1\), find \(y\) at \(x = 2\).
    (3)(Total 10 marks)
CAIE Further Paper 2 2024 November Q7
10 marks Challenging +1.8
7
  1. Show that an appropriate integrating factor for $$\sqrt { x ^ { 2 } + 16 } \frac { \mathrm {~d} y } { \mathrm {~d} x } + y = x \sqrt { x ^ { 2 } + 16 }$$ is \(\frac { 1 } { 4 } x + \frac { 1 } { 4 } \sqrt { x ^ { 2 } + 16 }\) .
    \includegraphics[max width=\textwidth, alt={}, center]{374b91df-926d-4f7f-a1d3-a54c70e8ff0e-15_2723_33_99_22}
  2. Hence find the solution of the differential equation $$\sqrt { x ^ { 2 } + 16 } \frac { \mathrm {~d} y } { \mathrm {~d} x } + y = x \sqrt { x ^ { 2 } + 16 }$$ for which \(y = 6\) when \(x = 3\).
CAIE Further Paper 2 2024 November Q7
10 marks Challenging +1.8
7
  1. Show that an appropriate integrating factor for $$\sqrt { x ^ { 2 } + 16 } \frac { \mathrm {~d} y } { \mathrm {~d} x } + y = x \sqrt { x ^ { 2 } + 16 }$$ is \(\frac { 1 } { 4 } x + \frac { 1 } { 4 } \sqrt { x ^ { 2 } + 16 }\) .
    \includegraphics[max width=\textwidth, alt={}, center]{4af32247-c1f9-4c1f-bdf8-bafe17aca1dc-15_2723_33_99_22}
  2. Hence find the solution of the differential equation $$\sqrt { x ^ { 2 } + 16 } \frac { \mathrm {~d} y } { \mathrm {~d} x } + y = x \sqrt { x ^ { 2 } + 16 }$$ for which \(y = 6\) when \(x = 3\).
OCR FP3 2009 June Q4
8 marks Challenging +1.2
4 The differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } + \frac { 1 } { 1 - x ^ { 2 } } y = ( 1 - x ) ^ { \frac { 1 } { 2 } } , \quad \text { where } | x | < 1$$ can be solved by the integrating factor method.
  1. Use an appropriate result given in the List of Formulae (MF1) to show that the integrating factor can be written as \(\left( \frac { 1 + x } { 1 - x } \right) ^ { \frac { 1 } { 2 } }\).
  2. Hence find the solution of the differential equation for which \(y = 2\) when \(x = 0\), giving your answer in the form \(y = \mathrm { f } ( x )\).
AQA FP3 2009 January Q2
7 marks Standard +0.3
2
  1. Show that \(\frac { 1 } { x ^ { 2 } }\) is an integrating factor for the first-order differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } - \frac { 2 } { x } y = x$$
  2. Hence find the general solution of this differential equation, giving your answer in the form \(y = \mathrm { f } ( x )\).
AQA FP3 2013 January Q5
8 marks Standard +0.8
5
  1. Show that \(\tan x\) is an integrating factor for the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } + \frac { \sec ^ { 2 } x } { \tan x } y = \tan x$$ (2 marks)
  2. Hence solve this differential equation, given that \(y = 3\) when \(x = \frac { \pi } { 4 }\).
    (6 marks)
AQA FP3 2006 June Q3
9 marks Standard +0.3
3
  1. Show that \(\sin x\) is an integrating factor for the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } + ( \cot x ) y = 2 \cos x$$
  2. Solve this differential equation, given that \(y = 2\) when \(x = \frac { \pi } { 2 }\).