Angles between vectors

Questions requiring calculation of angles between two vectors using the scalar product formula, including angles in triangles formed by position vectors.

11 questions · Moderate -0.2

Sort by: Default | Easiest first | Hardest first
CAIE P1 2010 June Q6
8 marks Moderate -0.3
6 Relative to an origin \(O\), the position vectors of the points \(A , B\) and \(C\) are given by $$\overrightarrow { O A } = \mathbf { i } - 2 \mathbf { j } + 4 \mathbf { k } , \quad \overrightarrow { O B } = 3 \mathbf { i } + 2 \mathbf { j } + 8 \mathbf { k } , \quad \overrightarrow { O C } = - \mathbf { i } - 2 \mathbf { j } + 10 \mathbf { k }$$
  1. Use a scalar product to find angle \(A B C\).
  2. Find the perimeter of triangle \(A B C\), giving your answer correct to 2 decimal places.
CAIE P1 2012 June Q8
10 marks Moderate -0.3
8
  1. Find the angle between the vectors \(3 \mathbf { i } - 4 \mathbf { k }\) and \(2 \mathbf { i } + 3 \mathbf { j } - 6 \mathbf { k }\). The vector \(\overrightarrow { O A }\) has a magnitude of 15 units and is in the same direction as the vector \(3 \mathbf { i } - 4 \mathbf { k }\). The vector \(\overrightarrow { O B }\) has a magnitude of 14 units and is in the same direction as the vector \(2 \mathbf { i } + 3 \mathbf { j } - 6 \mathbf { k }\).
  2. Express \(\overrightarrow { O A }\) and \(\overrightarrow { O B }\) in terms of \(\mathbf { i } , \mathbf { j }\) and \(\mathbf { k }\).
  3. Find the unit vector in the direction of \(\overrightarrow { A B }\).
CAIE P1 2015 June Q9
9 marks Moderate -0.3
9 Relative to an origin \(O\), the position vectors of points \(A\) and \(B\) are given by $$\overrightarrow { O A } = 2 \mathbf { i } + 4 \mathbf { j } + 4 \mathbf { k } \quad \text { and } \quad \overrightarrow { O B } = 3 \mathbf { i } + \mathbf { j } + 4 \mathbf { k }$$
  1. Use a vector method to find angle \(A O B\). The point \(C\) is such that \(\overrightarrow { A B } = \overrightarrow { B C }\).
  2. Find the unit vector in the direction of \(\overrightarrow { O C }\).
  3. Show that triangle \(O A C\) is isosceles.
CAIE P1 2018 June Q7
8 marks Moderate -0.8
7 Relative to an origin \(O\), the position vectors of the points \(A , B\) and \(C\) are given by $$\overrightarrow { O A } = \left( \begin{array} { r } 1 \\ - 3 \\ 2 \end{array} \right) , \quad \overrightarrow { O B } = \left( \begin{array} { r } - 1 \\ 3 \\ 5 \end{array} \right) \quad \text { and } \quad \overrightarrow { O C } = \left( \begin{array} { r } 3 \\ 1 \\ - 2 \end{array} \right)$$
  1. Find \(\overrightarrow { A C }\).
  2. The point \(M\) is the mid-point of \(A C\). Find the unit vector in the direction of \(\overrightarrow { O M }\).
  3. Evaluate \(\overrightarrow { A B } \cdot \overrightarrow { A C }\) and hence find angle \(B A C\).
CAIE P1 2003 November Q7
8 marks Standard +0.3
7
\includegraphics[max width=\textwidth, alt={}, center]{1cf37a58-8a7f-4dc8-9e35-2e8badf3eb83-3_636_1047_1153_550} The diagram shows a triangular prism with a horizontal rectangular base \(A D F C\), where \(C F = 12\) units and \(D F = 6\) units. The vertical ends \(A B C\) and \(D E F\) are isosceles triangles with \(A B = B C = 5\) units. The mid-points of \(B E\) and \(D F\) are \(M\) and \(N\) respectively. The origin \(O\) is at the mid-point of \(A C\). Unit vectors \(\mathbf { i } , \mathbf { j }\) and \(\mathbf { k }\) are parallel to \(O C , O N\) and \(O B\) respectively.
  1. Find the length of \(O B\).
  2. Express each of the vectors \(\overrightarrow { M C }\) and \(\overrightarrow { M N }\) in terms of \(\mathbf { i } , \mathbf { j }\) and \(\mathbf { k }\).
  3. Evaluate \(\overrightarrow { M C } \cdot \overrightarrow { M N }\) and hence find angle \(C M N\), giving your answer correct to the nearest degree.
CAIE P1 2004 November Q8
8 marks Moderate -0.3
8 The points \(A\) and \(B\) have position vectors \(\mathbf { i } + 7 \mathbf { j } + 2 \mathbf { k }\) and \(- 5 \mathbf { i } + 5 \mathbf { j } + 6 \mathbf { k }\) respectively, relative to an origin \(O\).
  1. Use a scalar product to calculate angle \(A O B\), giving your answer in radians correct to 3 significant figures.
  2. The point \(C\) is such that \(\overrightarrow { A B } = 2 \overrightarrow { B C }\). Find the unit vector in the direction of \(\overrightarrow { O C }\).
CAIE P1 2010 November Q5
6 marks Standard +0.3
5
\includegraphics[max width=\textwidth, alt={}, center]{73c0c113-8f35-4e7f-ad5d-604602498b71-2_741_533_1279_808} The diagram shows a pyramid \(O A B C\) with a horizontal base \(O A B\) where \(O A = 6 \mathrm {~cm} , O B = 8 \mathrm {~cm}\) and angle \(A O B = 90 ^ { \circ }\). The point \(C\) is vertically above \(O\) and \(O C = 10 \mathrm {~cm}\). Unit vectors \(\mathbf { i } , \mathbf { j }\) and \(\mathbf { k }\) are parallel to \(O A , O B\) and \(O C\) as shown. Use a scalar product to find angle \(A C B\).
CAIE P1 2011 November Q6
Moderate -0.8
6 Relative to an origin \(O\), the position vectors of points \(A\) and \(B\) are \(3 \mathbf { i } + 4 \mathbf { j } - \mathbf { k }\) and \(5 \mathbf { i } - 2 \mathbf { j } - 3 \mathbf { k }\) respectively.
  1. Use a scalar product to find angle \(B O A\). The point \(C\) is the mid-point of \(A B\). The point \(D\) is such that \(\overrightarrow { O D } = 2 \overrightarrow { O B }\).
  2. Find \(\overrightarrow { D C }\).
CAIE P3 2021 June Q11
10 marks Standard +0.3
11 With respect to the origin \(O\), the points \(A\) and \(B\) have position vectors given by \(\overrightarrow { O A } = 2 \mathbf { i } - \mathbf { j }\) and \(\overrightarrow { O B } = \mathbf { j } - 2 \mathbf { k }\).
  1. Show that \(O A = O B\) and use a scalar product to calculate angle \(A O B\) in degrees.
    The midpoint of \(A B\) is \(M\). The point \(P\) on the line through \(O\) and \(M\) is such that \(P A : O A = \sqrt { 7 } : 1\).
  2. Find the possible position vectors of \(P\).
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.
CAIE P3 2024 November Q9
11 marks Moderate -0.3
9 With respect to the origin \(O\), the points \(A , B\) and \(C\) have position vectors given by $$\overrightarrow { O A } = \left( \begin{array} { r } 2 \\ 1 \\ - 3 \end{array} \right) , \quad \overrightarrow { O B } = \left( \begin{array} { l } 0 \\ 4 \\ 1 \end{array} \right) \quad \text { and } \quad \overrightarrow { O C } = \left( \begin{array} { r } - 3 \\ - 2 \\ 2 \end{array} \right)$$
  1. The point \(D\) is such that \(A B C D\) is a trapezium with \(\overrightarrow { D C } = 3 \overrightarrow { A B }\). Find the position vector of \(D\).
  2. The diagonals of the trapezium intersect at the point \(P\). Find the position vector of \(P\).
    \includegraphics[max width=\textwidth, alt={}, center]{9da6c2ac-31aa-4063-88b9-e15e38bedd8a-13_2725_35_99_20}
  3. Using a scalar product, calculate angle \(A B C\).
AQA Further AS Paper 1 2024 June Q5
5 marks Moderate -0.5
5 The vectors \(\mathbf { a }\) and \(\mathbf { b }\) are given by $$\mathbf { a } = 3 \mathbf { i } + 4 \mathbf { j } - 2 \mathbf { k } \quad \text { and } \quad \mathbf { b } = 2 \mathbf { i } - \mathbf { j } - 5 \mathbf { k }$$ 5
  1. Calculate a.b 5
  2. \(\quad\) Calculate \(| \mathbf { a } |\) and \(| \mathbf { b } |\)
    \(| \mathbf { a } | =\) \(\_\_\_\_\)
    5
  3. Calculate the acute angle between \(\mathbf { a }\) and \(\mathbf { b }\)
    Give your answer to the nearest degree.