7 Relative to an origin \(O\), the position vectors of the points \(A , B\) and \(C\) are given by
$$\overrightarrow { O A } = \left( \begin{array} { r }
1
- 3
2
\end{array} \right) , \quad \overrightarrow { O B } = \left( \begin{array} { r }
- 1
3
5
\end{array} \right) \quad \text { and } \quad \overrightarrow { O C } = \left( \begin{array} { r }
3
1
- 2
\end{array} \right)$$
- Find \(\overrightarrow { A C }\).
- The point \(M\) is the mid-point of \(A C\). Find the unit vector in the direction of \(\overrightarrow { O M }\).
- Evaluate \(\overrightarrow { A B } \cdot \overrightarrow { A C }\) and hence find angle \(B A C\).