Maclaurin series for inverse hyperbolics

A question is this type if and only if it asks to find the Maclaurin series expansion for a function involving inverse hyperbolic functions.

4 questions · Challenging +1.4

Sort by: Default | Easiest first | Hardest first
CAIE Further Paper 2 2020 Specimen Q7
12 marks Challenging +1.8
7
  1. Starting from the definition of tanh in terms of exponentials, prove that \(\tanh ^ { - 1 } x = \frac { 1 } { 2 } \ln \left( \frac { 1 + x } { 1 - x } \right)\). [ \(\beta\)
  2. Given that \(y = \operatorname { tah } ^ { - 1 } \left( \frac { 1 - x } { 2 + x } \right) , \mathrm { s } \quad\) th \(\mathrm { t } ( 2 x + 1 ) \frac { \mathrm { dy } } { \mathrm { dx } } + 1 = 0\)
  3. Hence find the first three terms in the Maclaurin's series for \(\tanh ^ { - 1 } \left( \frac { 1 - x } { 2 + x } \right)\) in the form $$a \ln 3 + b x + c x ^ { 2 }$$ wh re \(a , b\) ad \(c\) are constants to be determined.
OCR FP2 2008 June Q7
10 marks Challenging +1.2
7 It is given that \(\mathrm { f } ( x ) = \tanh ^ { - 1 } \left( \frac { 1 - x } { 2 + x } \right)\), for \(x > - \frac { 1 } { 2 }\).
  1. Show that \(\mathrm { f } ^ { \prime } ( x ) = - \frac { 1 } { 1 + 2 x }\), and find \(\mathrm { f } ^ { \prime \prime } ( x )\).
  2. Show that the first three terms of the Maclaurin series for \(\mathrm { f } ( x )\) can be written as \(\ln a + b x + c x ^ { 2 }\), for constants \(a , b\) and \(c\) to be found.
OCR FP2 2013 June Q3
10 marks Challenging +1.2
3 It is given that \(\mathrm { f } ( x ) = \tanh ^ { - 1 } \left( \frac { 1 - x } { 3 + x } \right)\) for \(x > - 1\).
  1. Show that \(\mathrm { f } ^ { \prime \prime } ( x ) = \frac { 1 } { 2 ( x + 1 ) ^ { 2 } }\).
  2. Hence find the Maclaurin series for \(\mathrm { f } ( x )\) up to and including the term in \(x ^ { 2 }\).
OCR MEI Further Pure Core 2020 November Q13
9 marks Challenging +1.3
13
  1. Using exponentials, prove that \(\sinh 2 x = 2 \cosh x \sinh x\).
  2. Hence show that if \(\mathrm { f } ( x ) = \sinh ^ { 2 } x\), then \(\mathrm { f } ^ { \prime \prime } ( x ) = 2 \cosh 2 x\).
  3. Explain why the coefficients of odd powers in the Maclaurin series for \(\sinh ^ { 2 } x\) are all zero.
  4. Find the coefficient of \(x ^ { n }\) in this series when \(n\) is a positive even number.