7 It is given that \(\mathrm { f } ( x ) = \tanh ^ { - 1 } \left( \frac { 1 - x } { 2 + x } \right)\), for \(x > - \frac { 1 } { 2 }\).
- Show that \(\mathrm { f } ^ { \prime } ( x ) = - \frac { 1 } { 1 + 2 x }\), and find \(\mathrm { f } ^ { \prime \prime } ( x )\).
- Show that the first three terms of the Maclaurin series for \(\mathrm { f } ( x )\) can be written as \(\ln a + b x + c x ^ { 2 }\), for constants \(a , b\) and \(c\) to be found.