Arc length with hyperbolic curves

A question is this type if and only if it asks to find the exact arc length of a curve defined by hyperbolic functions or parametric equations involving hyperbolic functions.

18 questions · Challenging +1.3

Sort by: Default | Easiest first | Hardest first
CAIE Further Paper 2 2020 November Q8
15 marks Challenging +1.2
8
  1. Sketch the graph of \(\mathrm { y } = \operatorname { coth } \mathrm { x }\) for \(x > 0\) and state the equations of the asymptotes.
  2. Starting from the definitions of coth and cosech in terms of exponentials, prove that $$\operatorname { coth } ^ { 2 } x - \operatorname { cosech } ^ { 2 } x = 1$$ The curve \(C\) has equation \(\mathrm { y } = \ln \operatorname { coth } \left( \frac { 1 } { 2 } \mathrm { x } \right)\) for \(x > 0\).
  3. Show that \(\frac { \mathrm { dy } } { \mathrm { dx } } = - \operatorname { cosechx }\).
  4. It is given that the arc length of \(C\) from \(\mathrm { x } = \mathrm { a }\) to \(\mathrm { x } = 2 \mathrm { a }\) is \(\ln 4\), where \(a\) is a positive constant. Show that \(\cosh a = 2\) and find, in logarithmic form, the exact value of \(a\).
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.
Edexcel F3 2024 January Q8
9 marks Challenging +1.3
  1. In this question you must show all stages of your working.
Solutions relying entirely on calculator technology are not acceptable. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{469976eb-f1a9-4bdc-8f52-64ab23856109-30_695_904_386_568} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} Figure 2 shows a sketch of part of the curve \(C\) with equation \(y ^ { 2 } = 8 x\) and part of the line \(l\) with equation \(x = 18\) The region \(R\), shown shaded in Figure 2, is bounded by \(C\) and \(l\)
  1. Show that the perimeter of \(R\) is given by $$\alpha + 2 \int _ { 0 } ^ { \beta } \sqrt { 1 + \frac { y ^ { 2 } } { 16 } } d y$$ where \(\alpha\) and \(\beta\) are positive constants to be determined.
  2. Use the substitution \(y = 4 \sinh u\) and algebraic integration to determine the exact perimeter of \(R\), giving your answer in simplest form.
Edexcel F3 2024 June Q7
8 marks Challenging +1.8
  1. In this question you must show all stages of your working. Solutions relying on calculator technology are not acceptable.
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{7e38e2ed-ab5f-4906-940e-4b02c6992164-22_568_1192_376_440} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows the curve with equation $$y = \ln \left( \tanh \frac { x } { 2 } \right) \quad 1 \leqslant x \leqslant 2$$
  1. Show that the length, \(s\), of the curve is given by $$s = \int _ { 1 } ^ { 2 } \operatorname { coth } x \mathrm {~d} x$$
  2. Hence show that $$s = \ln \left( \mathrm { e } + \frac { 1 } { \mathrm { e } } \right)$$
Edexcel F3 2021 October Q1
6 marks Challenging +1.2
  1. The curve \(C\) has equation
$$y = \frac { 1 } { 2 } \operatorname { arcosh } ( 2 x ) \quad \frac { 7 } { 2 } \leqslant x \leqslant 13$$ Using calculus, determine the exact length of the curve \(C\).
Give your answer in the form \(p \sqrt { q }\), where \(p\) and \(q\) are constants to be found.
Edexcel FP3 2012 June Q2
6 marks Challenging +1.2
2. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{bb604886-6671-441a-b03d-427b5176df6e-03_606_1271_212_335} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} The curve \(C\), shown in Figure 1, has equation $$y = \frac { 1 } { 3 } \cosh 3 x , \quad 0 \leqslant x \leqslant \ln a$$ where \(a\) is a constant and \(a > 1\) Using calculus, show that the length of curve \(C\) is $$k \left( a ^ { 3 } - \frac { 1 } { a ^ { 3 } } \right)$$ and state the value of the constant \(k\).
Edexcel FP3 2013 June Q8
11 marks Challenging +1.2
8. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{094b3c91-1460-44a2-b9d6-4de90d3adfa0-15_590_855_210_548} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} The curve \(C\), shown in Figure 2, has equation $$y = 2 x ^ { \frac { 1 } { 2 } } , \quad 1 \leqslant x \leqslant 8$$
  1. Show that the length \(s\) of curve \(C\) is given by the equation $$s = \int _ { 1 } ^ { 8 } \sqrt { } \left( 1 + \frac { 1 } { x } \right) \mathrm { d } x$$
  2. Using the substitution \(x = \sinh ^ { 2 } u\), or otherwise, find an exact value for \(s\). Give your answer in the form \(a \sqrt { } 2 + \ln ( b + c \sqrt { } 2 )\) where \(a , b\) and \(c\) are integers.
Edexcel FP3 2014 June Q3
9 marks Challenging +1.2
  1. The curve \(C\) has equation
$$y = \frac { 1 } { 2 } \ln ( \operatorname { coth } x ) , \quad x > 0$$
  1. Show that $$\frac { \mathrm { d } y } { \mathrm {~d} x } = - \operatorname { cosech } 2 x$$ The points \(A\) and \(B\) lie on \(C\). The \(x\) coordinates of \(A\) and \(B\) are \(\ln 2\) and \(\ln 3\) respectively.
  2. Find the length of the arc \(A B\), giving your answer in the form \(p \ln q\), where \(p\) and \(q\) are rational numbers.
    (6)
Edexcel FP3 2015 June Q2
5 marks Standard +0.8
2. A curve has equation $$y = \cosh x , \quad 1 \leqslant x \leqslant \ln 5$$ Find the exact length of this curve. Give your answer in terms of e .
Edexcel FP3 2017 June Q8
10 marks Challenging +1.8
8. The curve \(C\) has equation $$y = \ln \left( \frac { \mathrm { e } ^ { x } + 1 } { \mathrm { e } ^ { x } - 1 } \right) , \quad \ln 2 \leqslant x \leqslant \ln 3$$
  1. Show that $$\frac { \mathrm { d } y } { \mathrm {~d} x } = - \frac { 2 \mathrm { e } ^ { x } } { \mathrm { e } ^ { 2 x } - 1 }$$
  2. Find the length of the curve \(C\), giving your answer in the form \(\ln a\), where \(a\) is a rational number.
    (6)
CAIE FP1 2010 November Q1
4 marks Challenging +1.2
1 The curve \(C\) has equation \(y = \frac { 1 } { 4 } \left( \mathrm { e } ^ { 2 x } + \mathrm { e } ^ { - 2 x } \right)\). Show that the length of the \(\operatorname { arc }\) of \(C\) from the point where \(x = 0\) to the point where \(x = \frac { 1 } { 2 }\) is \(\frac { \mathrm { e } ^ { 2 } - 1 } { 4 \mathrm { e } }\).
AQA FP2 2012 January Q3
12 marks Challenging +1.2
3 A curve has cartesian equation $$y = \frac { 1 } { 2 } \ln ( \tanh x )$$
  1. Show that $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 1 } { \sinh 2 x }$$
  2. The points \(A\) and \(B\) on the curve have \(x\)-coordinates \(\ln 2\) and \(\ln 4\) respectively. Find the arc length \(A B\), giving your answer in the form \(p \ln q\), where \(p\) and \(q\) are rational numbers.
Edexcel FP2 Specimen Q5
12 marks Challenging +1.8
5. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{1c262813-4160-4eda-9a36-e4ba38182c8a-14_480_588_210_740} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} An engineering student makes a miniature arch as part of the design for a piece of coursework. The cross-section of this arch is modelled by the curve with equation $$y = A - \frac { 1 } { 2 } \cosh 2 x , \quad - \ln a \leqslant x \leqslant \ln a$$ where \(a > 1\) and \(A\) is a positive constant. The curve begins and ends on the \(x\)-axis, as shown in Figure 1.
  1. Show that the length of this curve is \(k \left( a ^ { 2 } - \frac { 1 } { a ^ { 2 } } \right)\), stating the value of the constant \(k\). The length of the curved cross-section of the miniature arch is required to be 2 m long.
  2. Find the height of the arch, according to this model, giving your answer to 2 significant figures.
  3. Find also the width of the base of the arch giving your answer to 2 significant figures.
  4. Give the equation of another curve that could be used as a suitable model for the cross-section of an arch, with approximately the same height and width as you found using the first model.
    (You do not need to consider the arc length of your curve)
Edexcel FP3 Q13
9 marks
13. \begin{figure}[h]
\captionsetup{labelformat=empty} \caption{Figure 2} \includegraphics[alt={},max width=\textwidth]{6706ed7f-4575-4898-b757-aee8475b2a30-08_625_1365_333_456}
\end{figure} A rope is hung from points \(P\) and \(Q\) on the same horizontal level, as shown in Fig. 2. The curve formed by the rope is modelled by the equation $$y = a \cosh \left( \frac { x } { a } \right) , \quad - k a \leq x \leq k a$$ where \(a\) and \(k\) are positive constants.
  1. Prove that the length of the rope is \(2 a \sinh k\). Given that the length of the rope is \(8 a\),
  2. find the coordinates of \(Q\), leaving your answer in terms of natural logarithms and surds, where appropriate.
AQA FP2 2006 January Q7
17 marks Challenging +1.2
7
  1. Use the definitions $$\sinh \theta = \frac { 1 } { 2 } \left( \mathrm { e } ^ { \theta } - \mathrm { e } ^ { - \theta } \right) \quad \text { and } \quad \cosh \theta = \frac { 1 } { 2 } \left( \mathrm { e } ^ { \theta } + \mathrm { e } ^ { - \theta } \right)$$ to show that:
    1. \(2 \sinh \theta \cosh \theta = \sinh 2 \theta\);
    2. \(\cosh ^ { 2 } \theta + \sinh ^ { 2 } \theta = \cosh 2 \theta\).
  2. A curve is given parametrically by $$x = \cosh ^ { 3 } \theta , \quad y = \sinh ^ { 3 } \theta$$
    1. Show that $$\left( \frac { \mathrm { d } x } { \mathrm {~d} \theta } \right) ^ { 2 } + \left( \frac { \mathrm { d } y } { \mathrm {~d} \theta } \right) ^ { 2 } = \frac { 9 } { 4 } \sinh ^ { 2 } 2 \theta \cosh 2 \theta$$
    2. Show that the length of the arc of the curve from the point where \(\theta = 0\) to the point where \(\theta = 1\) is $$\frac { 1 } { 2 } \left[ ( \cosh 2 ) ^ { \frac { 3 } { 2 } } - 1 \right]$$
AQA FP2 2007 January Q4
18 marks Challenging +1.8
4
  1. Given that \(y = \operatorname { sech } t\), show that:
    1. \(\frac { \mathrm { d } y } { \mathrm {~d} t } = - \operatorname { sech } t \tanh t\);
    2. \(\left( \frac { \mathrm { d } y } { \mathrm {~d} t } \right) ^ { 2 } = \operatorname { sech } ^ { 2 } t - \operatorname { sech } ^ { 4 } t\).
  2. The diagram shows a sketch of part of the curve given parametrically by $$x = t - \tanh t \quad y = \operatorname { sech } t$$
    \includegraphics[max width=\textwidth, alt={}]{1891766e-7744-49ac-82b6-7e51cb63b381-3_424_625_863_703}
    The curve meets the \(y\)-axis at the point \(K\), and \(P ( x , y )\) is a general point on the curve. The arc length \(K P\) is denoted by \(s\). Show that:
    1. \(\left( \frac { \mathrm { d } x } { \mathrm {~d} t } \right) ^ { 2 } + \left( \frac { \mathrm { d } y } { \mathrm {~d} t } \right) ^ { 2 } = \tanh ^ { 2 } t\);
    2. \(s = \ln \cosh t\);
    3. \(y = \mathrm { e } ^ { - s }\).
  3. The arc \(K P\) is rotated through \(2 \pi\) radians about the \(x\)-axis. Show that the surface area generated is $$2 \pi \left( 1 - \mathrm { e } ^ { - S } \right)$$ (4 marks)
AQA FP2 2008 January Q7
12 marks Challenging +1.2
7
  1. Given that \(y = \ln \tanh \frac { x } { 2 }\), where \(x > 0\), show that $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \operatorname { cosech } x$$
  2. A curve has equation \(y = \ln \tanh \frac { x } { 2 }\), where \(x > 0\). The length of the arc of the curve between the points where \(x = 1\) and \(x = 2\) is denoted by \(s\).
    1. Show that $$s = \int _ { 1 } ^ { 2 } \operatorname { coth } x \mathrm {~d} x$$
    2. Hence show that \(s = \ln ( 2 \cosh 1 )\).
AQA FP2 2009 January Q7
12 marks
7
  1. Show that $$\frac { \mathrm { d } } { \mathrm {~d} x } \left( \cosh ^ { - 1 } \frac { 1 } { x } \right) = \frac { - 1 } { x \sqrt { 1 - x ^ { 2 } } }$$ (3 marks)
  2. A curve has equation $$y = \sqrt { 1 - x ^ { 2 } } - \cosh ^ { - 1 } \frac { 1 } { x } \quad ( 0 < x < 1 )$$ Show that:
    1. \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { \sqrt { 1 - x ^ { 2 } } } { x }\);
      (4 marks)
    2. the length of the arc of the curve from the point where \(x = \frac { 1 } { 4 }\) to the point where $$x = \frac { 3 } { 4 } \text { is } \ln 3 .$$ (5 marks)
AQA Further Paper 2 2019 June Q5
4 marks Challenging +1.2
5 A curve has equation \(y = \cosh x\) Show that the arc length of the curve from \(x = a\) to \(x = b\), where \(0 < a < b\), is equal to
\(\sinh b - \sinh a\)
\(6 \quad\) A circle \(C\) in the complex plane has equation \(| z - 2 - 5 \mathrm { i } | = a\) The point \(z _ { 1 }\) on \(C\) has the least argument of any point on \(C\), and \(\arg \left( z _ { 1 } \right) = \frac { \pi } { 4 }\) Prove that \(a = \frac { 3 \sqrt { } 2 } { 2 }\)