Hyperbola locus problems

A question is this type if and only if it asks to find the locus of a point defined by tangent/normal intersections or midpoints on a hyperbola.

6 questions · Challenging +1.4

Sort by: Default | Easiest first | Hardest first
Edexcel F3 2018 June Q4
12 marks Challenging +1.2
4. The hyperbola \(H\) has equation $$\frac { x ^ { 2 } } { a ^ { 2 } } - \frac { y ^ { 2 } } { b ^ { 2 } } = 1$$ The line \(l\) is a normal to \(H\) at the point \(P ( a \sec \theta , b \tan \theta ) , 0 < \theta < \frac { \pi } { 2 }\)
  1. Using calculus, show that an equation for \(l\) is $$a x \sin \theta + b y = \left( a ^ { 2 } + b ^ { 2 } \right) \tan \theta$$ The line \(l\) meets the \(x\)-axis at the point \(Q\), and the point \(M\) is the midpoint of \(P Q\).
  2. Find the coordinates of \(M\).
  3. Hence find the cartesian equation of the locus of \(M\) as \(\theta\) varies, giving your answer in the form \(y ^ { 2 } = \mathrm { f } ( x )\).
Edexcel FP3 2010 June Q8
13 marks Challenging +1.2
8. The hyperbola \(H\) has equation \(\frac { x ^ { 2 } } { 16 } - \frac { y ^ { 2 } } { 4 } = 1\). The line \(l _ { 1 }\) is the tangent to \(H\) at the point \(P ( 4 \sec t , 2 \tan t )\).
  1. Use calculus to show that an equation of \(l _ { 1 }\) is $$2 y \sin t = x - 4 \cos t$$ The line \(l _ { 2 }\) passes through the origin and is perpendicular to \(l _ { 1 }\).
    The lines \(l _ { 1 }\) and \(l _ { 2 }\) intersect at the point \(Q\).
  2. Show that, as \(t\) varies, an equation of the locus of \(Q\) is $$\left( x ^ { 2 } + y ^ { 2 } \right) ^ { 2 } = 16 x ^ { 2 } - 4 y ^ { 2 }$$
Edexcel FP3 2011 June Q8
14 marks Challenging +1.2
  1. The hyperbola \(H\) has equation
$$\frac { x ^ { 2 } } { a ^ { 2 } } - \frac { y ^ { 2 } } { b ^ { 2 } } = 1$$
  1. Use calculus to show that the equation of the tangent to \(H\) at the point \(( a \cosh \theta , b \sinh \theta )\) may be written in the form $$x b \cosh \theta - y a \sinh \theta = a b$$ The line \(l _ { 1 }\) is the tangent to \(H\) at the point \(( a \cosh \theta , b \sinh \theta ) , \theta \neq 0\).
    Given that \(l _ { 1 }\) meets the \(x\)-axis at the point \(P\),
  2. find, in terms of \(a\) and \(\theta\), the coordinates of \(P\). The line \(l _ { 2 }\) is the tangent to \(H\) at the point ( \(a , 0\) ).
    Given that \(l _ { 1 }\) and \(l _ { 2 }\) meet at the point \(Q\),
  3. find, in terms of \(a , b\) and \(\theta\), the coordinates of \(Q\).
  4. Show that, as \(\theta\) varies, the locus of the mid-point of \(P Q\) has equation $$x \left( 4 y ^ { 2 } + b ^ { 2 } \right) = a b ^ { 2 }$$
Edexcel FP3 Specimen Q9
13 marks Challenging +1.8
9. The hyperbola \(C\) has equation \(\frac { x ^ { 2 } } { a ^ { 2 } } - \frac { y ^ { 2 } } { b ^ { 2 } } = 1\)
  1. Show that an equation of the normal to \(C\) at \(P ( a \sec \theta , b \tan \theta )\) is $$b y + a x \sin \theta = \left( a ^ { 2 } + b ^ { 2 } \right) \tan \theta$$ The normal at \(P\) cuts the coordinate axes at \(A\) and \(B\). The mid-point of \(A B\) is \(M\).
  2. Find, in cartesian form, an equation of the locus of \(M\) as \(\theta\) varies.
    (Total 13 marks)
Edexcel FP1 2019 June Q8
14 marks Challenging +1.8
  1. The hyperbola \(H\) has equation
$$\frac { x ^ { 2 } } { 16 } - \frac { y ^ { 2 } } { 9 } = 1$$ The line \(l _ { 1 }\) is the tangent to \(H\) at the point \(P ( 4 \cosh \theta , 3 \sinh \theta )\).
The line \(l _ { 1 }\) meets the \(x\)-axis at the point \(A\).
The line \(l _ { 2 }\) is the tangent to \(H\) at the point \(( 4,0 )\).
The lines \(l _ { 1 }\) and \(l _ { 2 }\) meet at the point \(B\) and the midpoint of \(A B\) is the point \(M\).
  1. Show that, as \(\theta\) varies, a Cartesian equation for the locus of \(M\) is $$y ^ { 2 } = \frac { 9 ( 4 - x ) } { 4 x } \quad p < x < q$$ where \(p\) and \(q\) are values to be determined. Let \(S\) be the focus of \(H\) that lies on the positive \(x\)-axis.
  2. Show that the distance from \(M\) to \(S\) is greater than 1
Edexcel F3 Specimen Q8
13 marks Challenging +1.3
  1. The hyperbola \(H\) has equation \(\frac { x ^ { 2 } } { 16 } - \frac { y ^ { 2 } } { 4 } = 1\).
The line \(l _ { 1 }\) is the tangent to \(H\) at the point \(P ( 4 \sec t , 2 \tan t )\).
  1. Use calculus to show that an equation of \(l _ { 1 }\) is $$2 y \sin t = x - 4 \cos t$$ The line \(l _ { 2 }\) passes through the origin and is perpendicular to \(l _ { 1 }\).
    The lines \(l _ { 1 }\) and \(l _ { 2 }\) intersect at the point \(Q\).
  2. Show that, as \(t\) varies, an equation of the locus of \(Q\) is $$\left( x ^ { 2 } + y ^ { 2 } \right) ^ { 2 } = 16 x ^ { 2 } - 4 y ^ { 2 }$$