Rectangular hyperbola normal re-intersection

A question is this type if and only if it requires finding where the normal to a rectangular hyperbola xy=c² meets the curve again, given a parameter value.

12 questions · Challenging +1.1

Sort by: Default | Easiest first | Hardest first
Edexcel F1 2016 January Q6
9 marks Challenging +1.8
6. The rectangular hyperbola \(H\) has equation \(x y = c ^ { 2 }\), where \(c\) is a non-zero constant. The point \(P \left( c p , \frac { c } { p } \right)\), where \(p \neq 0\), lies on \(H\).
  1. Show that the normal to \(H\) at \(P\) has equation $$y p - p ^ { 3 } x = c \left( 1 - p ^ { 4 } \right)$$ The normal to \(H\) at \(P\) meets \(H\) again at the point \(Q\).
  2. Find, in terms of \(c\) and \(p\), the coordinates of \(Q\).
Edexcel F1 2023 January Q6
9 marks Challenging +1.8
  1. In this question you must show all stages of your working. Solutions relying entirely on calculator technology are not acceptable.
The rectangular hyperbola \(H\) has equation \(x y = 20\)
The point \(P \left( 2 t \sqrt { a } , \frac { 2 \sqrt { a } } { t } \right) , t \neq 0\), where \(a\) is a constant, is a general point on \(H\)
  1. State the value of \(a\)
  2. Show that the normal to \(H\) at the point \(P\) has equation $$t y - t ^ { 3 } x - 2 \sqrt { 5 } \left( 1 - t ^ { 4 } \right) = 0$$ The points \(A\) and \(B\) lie on \(H\)
    The point \(A\) has parameter \(t = c\) and the point \(B\) has parameter \(t = - \frac { 1 } { 2 c }\), where \(c\) is a constant. The normal to \(H\) at \(A\) meets \(H\) again at \(B\)
  3. Determine the possible values of \(C\)
Edexcel F1 2016 June Q6
10 marks Standard +0.8
6. The rectangular hyperbola \(H\) has equation \(x y = 25\)
  1. Verify that, for \(t \neq 0\), the point \(P \left( 5 t , \frac { 5 } { t } \right)\) is a general point on \(H\). The point \(A\) on \(H\) has parameter \(t = \frac { 1 } { 2 }\)
  2. Show that the normal to \(H\) at the point \(A\) has equation $$8 y - 2 x - 75 = 0$$ This normal at \(A\) meets \(H\) again at the point \(B\).
  3. Find the coordinates of \(B\).
Edexcel F1 2020 June Q5
9 marks Challenging +1.2
  1. The rectangular hyperbola \(H\) has equation \(x y = 64\)
The point \(P \left( 8 p , \frac { 8 } { p } \right)\), where \(p \neq 0\), lies on \(H\).
  1. Use calculus to show that the normal to \(H\) at \(P\) has equation $$p ^ { 3 } x - p y = 8 \left( p ^ { 4 } - 1 \right)$$ The normal to \(H\) at \(P\) meets \(H\) again at the point \(Q\).
  2. Determine, in terms of \(p\), the coordinates of \(Q\), giving your answers in simplest form. \includegraphics[max width=\textwidth, alt={}, center]{a3457c24-fbda-413d-b3b2-6be375307318-17_2255_50_314_34}
Edexcel F1 2023 June Q3
7 marks Challenging +1.2
  1. The rectangular hyperbola \(H\) has Cartesian equation \(x y = 9\)
The point \(P\) with coordinates \(\left( 3 t , \frac { 3 } { t } \right)\), where \(t \neq 0\), lies on \(H\)
  1. Use calculus to determine an equation for the normal to \(H\) at the point \(P\) Give your answer in the form \(t y - t ^ { 3 } x = \mathrm { f } ( t )\) Given that \(t = 2\)
  2. determine the coordinates of the point where the normal meets \(H\) again. Give your answer in simplest form.
Edexcel F1 2018 Specimen Q6
10 marks Standard +0.3
  1. The rectangular hyperbola \(H\) has equation \(x y = 25\)
    1. Verify that, for \(t \neq 0\), the point \(P \left( 5 t , \frac { 5 } { t } \right)\) is a general point on \(H\).
    The point \(A\) on \(H\) has parameter \(t = \frac { 1 } { 2 }\)
  2. Show that the normal to \(H\) at the point \(A\) has equation $$8 y - 2 x - 75 = 0$$ This normal at \(A\) meets \(H\) again at the point \(B\).
  3. Find the coordinates of \(B\).
    \includegraphics[max width=\textwidth, alt={}, center]{38217fcb-8f26-49ac-9bb1-61c2f304006e-13_2261_50_312_36}
    VIAV SIHI NI BIIIM ION OCVGHV SIHI NI GHIYM ION OCVJ4V SIHI NI JIIYM ION OC
Edexcel FP1 2010 June Q8
11 marks Challenging +1.2
8. The rectangular hyperbola \(H\) has equation \(x y = c ^ { 2 }\), where c is a positive constant. The point \(A\) on \(H\) has \(x\)-coordinate \(3 c\).
  1. Write down the \(y\)-coordinate of \(A\).
  2. Show that an equation of the normal to \(H\) at \(A\) is $$3 y = 27 x - 80 c$$ The normal to \(H\) at \(A\) meets \(H\) again at the point \(B\).
  3. Find, in terms of \(c\), the coordinates of \(B\).
Edexcel FP1 2013 June Q4
10 marks Challenging +1.2
4. The hyperbola \(H\) has equation $$x y = 3$$ The point \(Q ( 1,3 )\) is on \(H\).
  1. Find the equation of the normal to \(H\) at \(Q\) in the form \(y = a x + b\), where \(a\) and \(b\) are constants.
    (5) The normal at \(Q\) intersects \(H\) again at the point \(R\).
  2. Find the coordinates of \(R\).
    (5)
Edexcel FP1 2013 June Q4
9 marks Standard +0.8
4. The rectangular hyperbola \(H\) has Cartesian equation \(x y = 4\) The point \(P \left( 2 t , \frac { 2 } { t } \right)\) lies on \(H\), where \(t \neq 0\)
  1. Show that an equation of the normal to \(H\) at the point \(P\) is $$t y - t ^ { 3 } x = 2 - 2 t ^ { 4 }$$ The normal to \(H\) at the point where \(t = - \frac { 1 } { 2 }\) meets \(H\) again at the point \(Q\).
  2. Find the coordinates of the point \(Q\).
Edexcel FP1 2015 June Q5
9 marks Challenging +1.2
5. The rectangular hyperbola \(H\) has equation \(x y = 9\) The point \(A\) on \(H\) has coordinates \(\left( 6 , \frac { 3 } { 2 } \right)\).
  1. Show that the normal to \(H\) at the point \(A\) has equation $$2 y - 8 x + 45 = 0$$ The normal at \(A\) meets \(H\) again at the point \(B\).
  2. Find the coordinates of \(B\).
Edexcel FP1 Q8
13 marks Standard +0.8
8. The rectangular hyperbola \(H\) has equation \(x y = c ^ { 2 }\). The point ( \(3 t , \frac { 3 } { t }\) ) is a general point on this hyperbola.
  1. Find the value of \(c ^ { 2 }\).
  2. Show that an equation of the normal to \(H\) at the point ( \(3 t , \frac { 3 } { t }\) ) is $$y = t ^ { 2 } x + \left( \frac { 3 } { t } - 3 t ^ { 3 } \right)$$ The point \(P\) on \(H\) has coordinates (6, 1.5). The tangent to \(H\) at \(P\) meets the curve again at the point \(Q\).
  3. Find the coordinates of the point \(Q\).
Edexcel FP1 AS 2018 June Q5
10 marks Challenging +1.2
  1. The rectangular hyperbola \(H\) has equation \(x y = c ^ { 2 }\), where \(c\) is a non-zero constant.
The point \(P \left( c p , \frac { c } { p } \right)\), where \(p \neq 0\), lies on \(H\).
  1. Use calculus to show that an equation of the normal to \(H\) at \(P\) is $$p ^ { 3 } x - p y + c \left( 1 - p ^ { 4 } \right) = 0$$ The normal to \(H\) at the point \(P\) meets \(H\) again at the point \(Q\).
  2. Find the coordinates of the midpoint of \(P Q\) in terms of \(c\) and \(p\), simplifying your answer where possible.