Edexcel F1 2020 June — Question 5

Exam BoardEdexcel
ModuleF1 (Further Pure Mathematics 1)
Year2020
SessionJune
TopicConic sections

  1. The rectangular hyperbola \(H\) has equation \(x y = 64\)
The point \(P \left( 8 p , \frac { 8 } { p } \right)\), where \(p \neq 0\), lies on \(H\).
  1. Use calculus to show that the normal to \(H\) at \(P\) has equation $$p ^ { 3 } x - p y = 8 \left( p ^ { 4 } - 1 \right)$$ The normal to \(H\) at \(P\) meets \(H\) again at the point \(Q\).
  2. Determine, in terms of \(p\), the coordinates of \(Q\), giving your answers in simplest form. \includegraphics[max width=\textwidth, alt={}, center]{a3457c24-fbda-413d-b3b2-6be375307318-17_2255_50_314_34}