| Question | Answer | Marks | AO | Guidance |
| 5 | (a) | | DR \(\begin{aligned} | \frac { 1 } { 2 } \int \left( \sqrt { \sin \theta } e ^ { \frac { 1 } { 3 } \cos \theta } \right) ^ { 2 } \mathrm {~d} \theta |
| \mathrm {~A} = \frac { 1 } { 2 } \int _ { 0 } ^ { \pi } \sin \theta \mathrm { e } ^ { \frac { 2 } { 3 } \cos \theta } \mathrm {~d} \theta |
| = \frac { 1 } { 2 } \times - \frac { 3 } { 2 } \left[ \mathrm { e } ^ { \frac { 2 } { 3 } \cos \theta } \right] _ { 0 } ^ { \pi } |
| \frac { 3 } { 4 } \left( \mathrm { e } ^ { \frac { 2 } { 3 } } - \mathrm { e } ^ { - \frac { 2 } { 3 } } \right) \end{aligned}\) | | | | Correct form, in terms of \(\theta\), | | Integrand has been squared out. Must include limits (can be seen later) | | Might be as result of substitution Allow coefficient error for M1 isw |
| | M1 can be implied by 1.0757 ... BC | | eg \(\frac { 3 } { 4 } \left[ \mathrm { e } ^ { u } \right] _ { - \frac { 2 } { 3 } } ^ { \frac { 2 } { 3 } }\) or \(\frac { 3 } { 4 } \left[ \mathrm { e } ^ { \frac { 2 } { 3 } u } \right] _ { - 1 } ^ { 1 }\) oe |
|
| (b) | | | DR \(\frac { \mathrm { d } r } { \mathrm {~d} \theta } = \frac { 1 } { 2 } \cos \theta ( \sin \theta ) ^ { - \frac { 1 } { 2 } } e ^ { \frac { 1 } { 3 } \cos \theta } +\) \(( \sin \theta ) ^ { \frac { 1 } { 2 } } \left( - \frac { 1 } { 3 } \sin \theta \right) e ^ { \frac { 1 } { 3 } \cos \theta }\) | | \(\frac { \mathrm { d } r } { \mathrm {~d} \theta } = \frac { 1 } { 6 } ( \sin \theta ) ^ { - \frac { 1 } { 2 } } e ^ { \frac { 1 } { 3 } \cos \theta } \left( 3 \cos \theta - 2 \sin ^ { 2 } \theta \right)\) | | \(\frac { \mathrm { d } r } { \mathrm {~d} \theta } = 0 \Rightarrow 3 \cos \theta - 2 \sin ^ { 2 } \theta = 0\) | | \(2 \cos ^ { 2 } \theta + 3 \cos \theta - 2 = 0\) | | \(\cos \theta = \frac { 1 } { 2 } , - 2\) | | \(\cos \theta \neq - 2\) | | \(\Rightarrow \sin \theta = \frac { \sqrt { 3 } } { 2 } \Rightarrow r = \sqrt { \frac { \sqrt { 3 } } { 2 } } \mathrm { e } ^ { \frac { 1 } { 3 } \times \frac { 1 } { 2 } } = \sqrt { \frac { \sqrt { 3 } } { 2 } } \mathrm { e } ^ { \frac { 1 } { 6 } }\) |
| | | | Attempt to differentiate using product and chain rules. | | Setting \(r ^ { \prime }\) to zero and factorising/cancelling to produce a quadratic equation in \(\cos\) and/or sin Use of \(\cos ^ { 2 } + \sin ^ { 2 } = 1\) to find 3 term quadratic equation in \(\cos \theta\). | | Solving quadratic correctly Explicitly rejecting root | | AG. At least one intermediate step must be seen. |
| | Must be in the form \(u v ^ { \prime } + u ^ { \prime } v\) with at most one of \(u , v , u ^ { \prime }\) or \(v ^ { \prime }\) incorrect or omitted | | Or could be in \(\sin ^ { 2 } \theta\); \(4 \sin ^ { 4 } \theta + 9 \sin ^ { 2 } \theta - 9 = 0\) | | \(\sin ^ { 2 } \theta = \frac { 3 } { 4 } , - 3\) | | Rejects \(\sin ^ { 2 } \theta = - 3\) and \(\sin \theta =\) \(- \frac { \sqrt { 3 } } { 2 }\) | | Can be awarded even if rejection of root(s) was implicit. |
|