Quadratic with transformed roots

A question is this type if and only if it gives a quadratic equation with roots α, β and asks to find a new quadratic with roots that are specific expressions involving α and β (like α/β + β/α, or α² + β).

48 questions · Standard +0.5

Sort by: Default | Easiest first | Hardest first
Edexcel F1 2014 January Q2
8 marks Moderate -0.3
2. The quadratic equation $$5 x ^ { 2 } - 4 x + 2 = 0$$ has roots \(\alpha\) and \(\beta\).
  1. Write down the value of \(\alpha + \beta\) and the value of \(\alpha \beta\).
  2. Find the value of \(\alpha ^ { 2 } + \beta ^ { 2 }\).
  3. Find a quadratic equation which has roots $$\frac { 1 } { \alpha ^ { 2 } } \text { and } \frac { 1 } { \beta ^ { 2 } }$$ giving your answer in the form \(p x ^ { 2 } + q x + r = 0\), where \(p , q\) and \(r\) are integers. \includegraphics[max width=\textwidth, alt={}, center]{4da2bb2c-a51b-493c-a9f2-f4ff008a3aac-07_70_51_2663_1896}
Edexcel F1 2015 January Q5
8 marks Standard +0.3
5. The quadratic equation $$4 x ^ { 2 } + 3 x + 1 = 0$$ has roots \(\alpha\) and \(\beta\).
  1. Write down the value of \(( \alpha + \beta )\) and the value of \(\alpha \beta\).
  2. Find the value of \(\left( \alpha ^ { 2 } + \beta ^ { 2 } \right)\).
  3. Find a quadratic equation which has roots $$( 4 \alpha - \beta ) \text { and } ( 4 \beta - \alpha )$$ giving your answer in the form \(p x ^ { 2 } + q x + r = 0\) where \(p , q\) and \(r\) are integers to be determined.
Edexcel F1 2016 January Q3
11 marks Standard +0.8
3. The quadratic equation $$x ^ { 2 } - 2 x + 3 = 0$$ has roots \(\alpha\) and \(\beta\).
Without solving the equation,
    1. write down the value of \(( \alpha + \beta )\) and the value of \(\alpha \beta\)
    2. show that \(\alpha ^ { 2 } + \beta ^ { 2 } = - 2\)
    3. find the value of \(\alpha ^ { 3 } + \beta ^ { 3 }\)
    1. show that \(\alpha ^ { 4 } + \beta ^ { 4 } = \left( \alpha ^ { 2 } + \beta ^ { 2 } \right) ^ { 2 } - 2 ( \alpha \beta ) ^ { 2 }\)
    2. find a quadratic equation which has roots $$\text { ( } \alpha ^ { 3 } - \beta \text { ) and ( } \beta ^ { 3 } - \alpha \text { ) }$$ giving your answer in the form \(p x ^ { 2 } + q x + r = 0\) where \(p , q\) and \(r\) are integers.
Edexcel F1 2018 January Q4
8 marks Standard +0.8
  1. The quadratic equation
$$3 x ^ { 2 } + 2 x + 5 = 0$$ has roots \(\alpha\) and \(\beta\). Without solving the equation,
  1. find the value of \(\alpha ^ { 2 } + \beta ^ { 2 }\)
  2. show that \(\alpha ^ { 3 } + \beta ^ { 3 } = \frac { 82 } { 27 }\)
  3. find a quadratic equation which has roots $$\left( \alpha + \frac { \alpha } { \beta ^ { 2 } } \right) \text { and } \left( \beta + \frac { \beta } { \alpha ^ { 2 } } \right)$$ giving your answer in the form \(p x ^ { 2 } + q x + r = 0\), where \(p , q\) and \(r\) are integers.
Edexcel F1 2021 January Q4
8 marks Standard +0.8
  1. The equation \(2 x ^ { 2 } + 5 x + 7 = 0\) has roots \(\alpha\) and \(\beta\)
Without solving the equation
  1. determine the exact value of \(\alpha ^ { 3 } + \beta ^ { 3 }\)
  2. form a quadratic equation, with integer coefficients, which has roots $$\frac { \alpha ^ { 2 } } { \beta } \text { and } \frac { \beta ^ { 2 } } { \alpha }$$ \includegraphics[max width=\textwidth, alt={}, center]{f8660b02-384e-460f-a0e4-282ef5fef475-09_2255_50_314_34}
    VIXV SIHIANI III IM IONOOVIAV SIHI NI JYHAM ION OOVI4V SIHI NI JLIYM ION OO
Edexcel F1 2022 January Q6
8 marks Standard +0.8
6. The quadratic equation $$A x ^ { 2 } + 5 x - 12 = 0$$ where \(A\) is a constant, has roots \(\alpha\) and \(\beta\)
  1. Write down an expression in terms of \(A\) for
    1. \(\alpha + \beta\)
    2. \(\alpha \beta\) The equation $$4 x ^ { 2 } - 5 x + B = 0$$ where \(B\) is a constant, has roots \(\alpha - \frac { 3 } { \beta }\) and \(\beta - \frac { 3 } { \alpha }\)
  2. Determine the value of \(A\)
  3. Determine the value of \(B\) The rectangular hyperbola \(H\) has equation \(x y = 36\) The point \(P ( 4,9 )\) lies on \(H\)
  4. Show, using calculus, that the normal to \(H\) at \(P\) has equation $$4 x - 9 y + 65 = 0$$ The normal to \(H\) at \(P\) crosses \(H\) again at the point \(Q\)
  5. Determine an equation for the tangent to \(H\) at \(Q\), giving your answer in the form \(y = m x + c\) where \(m\) and \(c\) are rational constants. \section*{7. In this question you must show all stages of your working.
    Solutions relying entirely on calculator technology are not acceptable.
    7 "}
Edexcel F1 2023 January Q5
9 marks Standard +0.8
  1. The quadratic equation
$$4 x ^ { 2 } + 3 x + k = 0$$ where \(k\) is an integer, has roots \(\alpha\) and \(\beta\)
  1. Write down, in terms of \(k\) where appropriate, the value of \(\alpha + \beta\) and the value of \(\alpha \beta\)
  2. Determine, in simplest form in terms of \(k\), the value of \(\frac { \alpha } { \beta ^ { 2 } } + \frac { \beta } { \alpha ^ { 2 } }\)
  3. Determine a quadratic equation which has roots $$\frac { \alpha } { \beta ^ { 2 } } \text { and } \frac { \beta } { \alpha ^ { 2 } }$$ giving your answer in the form \(p x ^ { 2 } + q x + r = 0\) where \(p , q\) and \(r\) are integer values in terms of \(k\)
Edexcel F1 2024 January Q5
9 marks Standard +0.8
  1. The quadratic equation
$$2 x ^ { 2 } - 3 x + 7 = 0$$ has roots \(\alpha\) and \(\beta\) Without solving the equation,
  1. write down the value of \(( \alpha + \beta )\) and the value of \(\alpha \beta\)
  2. determine the value of \(\alpha ^ { 2 } + \beta ^ { 2 }\)
  3. find a quadratic equation which has roots $$\left( \alpha - \frac { 1 } { \beta ^ { 2 } } \right) \text { and } \left( \beta - \frac { 1 } { \alpha ^ { 2 } } \right)$$ giving your answer in the form \(p x ^ { 2 } + q x + r = 0\) where \(p , q\) and \(r\) are integers to be determined.
Edexcel F1 2014 June Q6
8 marks Standard +0.8
6. It is given that \(\alpha\) and \(\beta\) are roots of the equation \(3 x ^ { 2 } + 5 x - 1 = 0\)
  1. Find the exact value of \(\alpha ^ { 3 } + \beta ^ { 3 }\)
  2. Find a quadratic equation which has roots \(\frac { \alpha ^ { 2 } } { \beta }\) and \(\frac { \beta ^ { 2 } } { \alpha }\), giving your answer in the form \(a x ^ { 2 } + b x + c = 0\), where \(a\), \(b\) and \(c\) are integers.
Edexcel F1 2015 June Q3
6 marks Standard +0.3
3. It is given that \(\alpha\) and \(\beta\) are roots of the equation $$2 x ^ { 2 } - 7 x + 4 = 0$$
  1. Find the exact value of \(\alpha ^ { 2 } + \beta ^ { 2 }\)
  2. Find a quadratic equation which has roots \(\frac { \alpha } { \beta }\) and \(\frac { \beta } { \alpha }\), giving your answer in the form \(a x ^ { 2 } + b x + c = 0\), where \(a , b\) and \(c\) are integers.
Edexcel F1 2016 June Q9
9 marks Standard +0.8
9. The quadratic equation $$2 x ^ { 2 } + 4 x - 3 = 0$$ has roots \(\alpha\) and \(\beta\).
Without solving the quadratic equation,
  1. find the exact value of
    1. \(\alpha ^ { 2 } + \beta ^ { 2 }\)
    2. \(\alpha ^ { 3 } + \beta ^ { 3 }\)
  2. Find a quadratic equation which has roots ( \(\alpha ^ { 2 } + \beta\) ) and ( \(\beta ^ { 2 } + \alpha\) ), giving your answer in the form \(a x ^ { 2 } + b x + c = 0\), where \(a , b\) and \(c\) are integers.
    \includegraphics[max width=\textwidth, alt={}, center]{0b7ef4a1-51bf-4f0c-908a-7caf26a144dc-27_99_332_2622_1466}
Edexcel F1 2018 June Q7
9 marks Standard +0.3
7. It is given that \(\alpha\) and \(\beta\) are roots of the equation \(5 x ^ { 2 } - 4 x + 3 = 0\) Without solving the quadratic equation,
  1. find the exact value of \(\frac { 1 } { \alpha ^ { 2 } } + \frac { 1 } { \beta ^ { 2 } }\)
  2. find a quadratic equation which has roots \(\frac { 3 } { \alpha ^ { 2 } }\) and \(\frac { 3 } { \beta ^ { 2 } }\) giving your answer in the form \(a x ^ { 2 } + b x + c = 0\), where \(a\), \(b\) and \(c\) are integers to be found.
Edexcel F1 2020 June Q2
9 marks Standard +0.3
2
2. The quadratic equation $$5 x ^ { 2 } - 2 x + 3 = 0$$ has roots \(\alpha\) and \(\beta\).
Without solving the equation,
  1. write down the value of \(( \alpha + \beta )\) and the value of \(\alpha \beta\)
  2. determine, giving each answer as a simplified fraction, the value of
    1. \(\alpha ^ { 2 } + \beta ^ { 2 }\)
    2. \(\alpha ^ { 3 } + \beta ^ { 3 }\)
  3. determine a quadratic equation that has roots $$\left( \alpha + \beta ^ { 2 } \right) \text { and } \left( \beta + \alpha ^ { 2 } \right)$$ giving your answer in the form \(p x ^ { 2 } + q x + r = 0\) where \(p , q\) and \(r\) are integers.
Edexcel F1 2022 June Q5
10 marks Standard +0.8
  1. The quadratic equation
$$2 x ^ { 2 } - 3 x + 5 = 0$$ has roots \(\alpha\) and \(\beta\) Without solving the equation,
  1. write down the value of \(( \alpha + \beta )\) and the value of \(\alpha \beta\)
  2. determine the value of
    1. \(\alpha ^ { 2 } + \beta ^ { 2 }\)
    2. \(\alpha ^ { 3 } + \beta ^ { 3 }\)
  3. find a quadratic equation which has roots $$\left( \alpha ^ { 3 } - \beta \right) \text { and } \left( \beta ^ { 3 } - \alpha \right)$$ giving your answer in the form \(p x ^ { 2 } + q x + r = 0\) where \(p , q\) and \(r\) are integers to be determined.
Edexcel F1 2023 June Q5
10 marks Standard +0.8
5. $$f ( x ) = x ^ { 2 } - 6 x + 3$$ The equation \(\mathrm { f } ( x ) = 0\) has roots \(\alpha\) and \(\beta\) Without solving the equation,
  1. determine the value of $$\left( \alpha ^ { 2 } + 1 \right) \left( \beta ^ { 2 } + 1 \right)$$
  2. find a quadratic equation which has roots $$\frac { \alpha } { \left( \alpha ^ { 2 } + 1 \right) } \text { and } \frac { \beta } { \left( \beta ^ { 2 } + 1 \right) }$$ giving your answer in the form \(p x ^ { 2 } + q x + r = 0\) where \(p , q\) and \(r\) are integers to be determined.
Edexcel F1 2024 June Q5
9 marks Challenging +1.2
  1. The equation \(5 x ^ { 2 } - 4 x + 2 = 0\) has roots \(\frac { 1 } { p }\) and \(\frac { 1 } { q }\)
    1. Without solving the equation,
      1. show that \(p q = \frac { 5 } { 2 }\)
      2. determine the value of \(p + q\)
    2. Hence, without finding the values of \(p\) and \(q\), determine a quadratic equation with roots
    $$\frac { p } { p ^ { 2 } + 1 } \text { and } \frac { q } { q ^ { 2 } + 1 }$$ giving your answer in the form \(a x ^ { 2 } + b x + c = 0\) where \(a , b\) and \(c\) are integers.
Edexcel F1 2021 October Q3
9 marks Standard +0.8
3. The quadratic equation $$2 x ^ { 2 } - 5 x + 7 = 0$$ has roots \(\alpha\) and \(\beta\) Without solving the equation,
  1. write down the value of \(( \alpha + \beta )\) and the value of \(\alpha \beta\)
  2. determine, giving each answer as a simplified fraction, the value of
    1. \(\alpha ^ { 2 } + \beta ^ { 2 }\)
    2. \(\alpha ^ { 3 } + \beta ^ { 3 }\)
  3. find a quadratic equation that has roots $$\frac { 1 } { \alpha ^ { 2 } + \beta } \text { and } \frac { 1 } { \beta ^ { 2 } + \alpha }$$ giving your answer in the form \(p x ^ { 2 } + q x + r = 0\) where \(p , q\) and \(r\) are integers to be determined.
Edexcel F1 2018 Specimen Q9
9 marks Standard +0.8
  1. The quadratic equation
$$2 x ^ { 2 } + 4 x - 3 = 0$$ has roots \(\alpha\) and \(\beta\).
Without solving the quadratic equation,
  1. find the exact value of
    1. \(\alpha ^ { 2 } + \beta ^ { 2 }\)
    2. \(\alpha ^ { 3 } + \beta ^ { 3 }\)
  2. Find a quadratic equation which has roots ( \(\alpha ^ { 2 } + \beta\) ) and ( \(\beta ^ { 2 } + \alpha\) ), giving your answer in the form \(a x ^ { 2 } + b x + c = 0\), where \(a , b\) and \(c\) are integers.
    VIAV SIHI NI BIIIM ION OCVGHV SIHI NI GHIYM ION OCVJ4V SIHI NI JIIYM ION OC
Edexcel F1 Specimen Q4
12 marks Standard +0.3
  1. The quadratic equation
$$5 x ^ { 2 } - 4 x + 1 = 0$$ has roots \(\alpha\) and \(\beta\).
  1. Write down the value of \(\alpha + \beta\) and the value of \(\alpha \beta\).
  2. Show that \(\frac { \alpha } { \beta } + \frac { \beta } { \alpha } = \frac { 6 } { 5 }\)
  3. Find a quadratic equation with integer coefficients, which has roots $$\alpha + \frac { 1 } { \alpha } \text { and } \beta + \frac { 1 } { \beta }$$
Edexcel F1 2017 January Q2
7 marks Standard +0.3
The quadratic equation $$2 x ^ { 2 } - x + 3 = 0$$ has roots \(\alpha\) and \(\beta\).
Without solving the equation,
  1. write down the value of \(( \alpha + \beta )\) and the value of \(\alpha \beta\)
  2. find the value of \(\frac { 1 } { \alpha } + \frac { 1 } { \beta }\)
  3. find a quadratic equation which has roots $$\left( 2 \alpha - \frac { 1 } { \beta } \right) \text { and } \left( 2 \beta - \frac { 1 } { \alpha } \right)$$ giving your answer in the form \(p x ^ { 2 } + q x + r = 0\) where \(p , q\) and \(r\) are integers.
OCR FP1 2007 January Q7
8 marks Standard +0.3
7 The quadratic equation \(x ^ { 2 } + 5 x + 10 = 0\) has roots \(\alpha\) and \(\beta\).
  1. Write down the values of \(\alpha + \beta\) and \(\alpha \beta\).
  2. Show that \(\alpha ^ { 2 } + \beta ^ { 2 } = 5\).
  3. Hence find a quadratic equation which has roots \(\frac { \alpha } { \beta }\) and \(\frac { \beta } { \alpha }\).
OCR FP1 2008 June Q8
7 marks Standard +0.3
8 The quadratic equation \(x ^ { 2 } + k x + 2 k = 0\), where \(k\) is a non-zero constant, has roots \(\alpha\) and \(\beta\). Find a quadratic equation with roots \(\frac { \alpha } { \beta }\) and \(\frac { \beta } { \alpha }\).
OCR FP1 2009 January Q8
10 marks Standard +0.3
8
  1. Show that \(( \alpha - \beta ) ^ { 2 } \equiv ( \alpha + \beta ) ^ { 2 } - 4 \alpha \beta\). The quadratic equation \(x ^ { 2 } - 6 k x + k ^ { 2 } = 0\), where \(k\) is a positive constant, has roots \(\alpha\) and \(\beta\), with \(\alpha > \beta\).
  2. Show that \(\alpha - \beta = 4 \sqrt { 2 } k\).
  3. Hence find a quadratic equation with roots \(\alpha + 1\) and \(\beta - 1\).
OCR FP1 2011 January Q8
9 marks Standard +0.3
8 The quadratic equation \(2 x ^ { 2 } - x + 3 = 0\) has roots \(\alpha\) and \(\beta\), and the quadratic equation \(x ^ { 2 } - p x + q = 0\) has roots \(\alpha + \frac { 1 } { \alpha }\) and \(\beta + \frac { 1 } { \beta }\).
  1. Show that \(p = \frac { 5 } { 6 }\).
  2. Find the value of \(q\).
OCR FP1 2010 June Q7
7 marks Standard +0.8
7 The quadratic equation \(x ^ { 2 } + 2 k x + k = 0\), where \(k\) is a non-zero constant, has roots \(\alpha\) and \(\beta\). Find a quadratic equation with roots \(\frac { \alpha + \beta } { \alpha }\) and \(\frac { \alpha + \beta } { \beta }\).
  1. Show that \(\frac { 1 } { \sqrt { r + 2 } + \sqrt { r } } \equiv \frac { \sqrt { r + 2 } - \sqrt { r } } { 2 }\).
  2. Hence find an expression, in terms of \(n\), for $$\sum _ { r = 1 } ^ { n } \frac { 1 } { \sqrt { r + 2 } + \sqrt { r } }$$
  3. State, giving a brief reason, whether the series \(\sum _ { r = 1 } ^ { \infty } \frac { 1 } { \sqrt { r + 2 } + \sqrt { r } }\) converges.