Edexcel F1 2024 June — Question 5

Exam BoardEdexcel
ModuleF1 (Further Pure Mathematics 1)
Year2024
SessionJune
TopicRoots of polynomials

  1. The equation \(5 x ^ { 2 } - 4 x + 2 = 0\) has roots \(\frac { 1 } { p }\) and \(\frac { 1 } { q }\)
    1. Without solving the equation,
      1. show that \(p q = \frac { 5 } { 2 }\)
      2. determine the value of \(p + q\)
    2. Hence, without finding the values of \(p\) and \(q\), determine a quadratic equation with roots
    $$\frac { p } { p ^ { 2 } + 1 } \text { and } \frac { q } { q ^ { 2 } + 1 }$$ giving your answer in the form \(a x ^ { 2 } + b x + c = 0\) where \(a , b\) and \(c\) are integers.